
Precision-Guided Context Sensitivity
for Pointer Analysis

Yue Li, Tian Tan, Anders Møller, Yannis Smaragdakis

OOPSLA 2018

1

A New
Pointer Analysis Technique

for
Object-Oriented Programs

2

Pointer Analysis

Determines
“which objects a variable can point to?”

3

Uses of Pointer Analysis
Clients Tools

 Security analysis

 Bug detection

 Compiler optimization

 Program verification

 Program understanding

 …

Chord

4

…

Uses of Pointer Analysis
Clients Tools

 Security analysis

 Bug detection

 Compiler optimization

 Program verification

 Program understanding

 …

Chord

5

…

A precise pointer analysis
benefits all above clients & tools

Context Sensitivity

One of the most successful pointer analysis
techniques for producing high precision for
OO programs

6

Context Sensitivity

Distinguishes points-to information of
methods by different calling contexts

7

Context Sensitivity: Example

8

static void main() {
A a1 = new A(); // A/1
b1 = a1.foo("s1");

A a2 = new A(); // A/2
b2 = a2.foo("s2");

}

class A {
String foo(String s) {
return s;

}
}

Variable Object
s "s1", "s2"
b1 "s1", "s2"
b2 "s1", "s2"

Context-Insensitivity

Context Sensitivity: Example

9

static void main() {
A a1 = new A(); // A/1
b1 = a1.foo("s1");

A a2 = new A(); // A/2
b2 = a2.foo("s2");

}

class A {
String foo(String s) {
return s;

}
}

Variable Object
s "s1", "s2"
b1 "s1", "s2"
b2 "s1", "s2"

Context-Insensitivity

Context Sensitivity: Example

10

static void main() {
A a1 = new A(); // A/1
b1 = a1.foo("s1");

A a2 = new A(); // A/2
b2 = a2.foo("s2");

}

class A {
String foo(String s) {
return s;

}
}

1-Object-Sensitivity

Context Variable Object
[A/1] s "s1"
[A/2] s "s2"

[] b1 "s1"
[] b2 "s2"

Variable Object
s "s1", "s2"
b1 "s1", "s2"
b2 "s1", "s2"

Context-Insensitivity

Context Sensitivity

Widely adopted by static analysis
frameworks for OO programs

11

Chord

FlowDroid

Problem of Context Sensitivity (C.S.)

12

Comes with heavy efficiency costs

Conventional: apply C.S. to
all methods

Problem of Context Sensitivity (C.S.)

Comes with heavy efficiency costs

13

Do not benefit
from C.S.

Analyzed for multiple
contexts redundantly

Conventional: apply C.S. to
all methods

Problem of Context Sensitivity (C.S.)

Comes with heavy efficiency costs

14

Benefit from C.S.
(gain precision)

Do not benefit
from C.S.

Analyzed for multiple
contexts redundantly

Precision-critical
methods

Conventional: apply C.S. to
all methods

15

Precision-critical
methods

C.S.
C.I.

Do not benefit
from C.S.

Analyzed for multiple
contexts redundantly

Benefit from C.S.
(gain precision)

Problem of Context Sensitivity (C.S.)

Comes with heavy efficiency costs

16

Precision-critical
methods

C.S.
C.I.

Do not benefit
from C.S.

Analyzed for multiple
contexts redundantly

Benefit from C.S.
(gain precision)

Problem of Context Sensitivity (C.S.)

Comes with heavy efficiency costs

Preserve precision
Improve efficiency of C.S.

Our Goal
Identify precision-critical methods

17

Precision-critical
methods

C.S.
C.I.

Do not benefit
from C.S.

Analyzed for multiple
contexts redundantly

Benefit from C.S.
(gain precision)

Preserve precision
Improve efficiency of C.S.

Challenge

18

context-sensitive
analysis

precision
benefits

yield

omitting
context sensitivity

precision
losses

introduce

When?

When?

Still unclear where and how imprecision
is introduced in a context-insensitive
pointer analysis

Our Key Contribution

19

Classify source of imprecision into
three general precision-loss patterns

◦ Direct flow

◦ Wrapped flow

◦ Unwrapped flow

Our Key Contribution

20

Classify source of imprecision into
three general precision-loss patterns

◦ Direct flow

◦ Wrapped flow

◦ Unwrapped flow

account for ~99%
of precision

Our Key Contribution

21

Identify
Precision-Critical

Methods

Recognize
Three Flow

Patterns

Classify source of imprecision into
three general precision-loss patterns

◦ Direct flow

◦ Wrapped flow

◦ Unwrapped flow

account for ~99%
of precision

IN and OUT Methods

Given a class
◦ IN methods
 One or more parameters

◦ OUT methods
 non-void return types

22

IN and OUT Methods

23

Given a class
◦ IN methods
 One or more parameters

◦ OUT methods
 non-void return types

class Foo {
C f;

void setF(C p) {
this.f = p;

}

C getF() {
C r = this.f;
return r;

}

void bar() {
this.f = null;

}
}

class Foo {
C f;

void setF(C p) {
this.f = p;

}

C getF() {
C r = this.f;
return r;

}

void bar() {
this.f = null;

}
}

IN and OUT Methods

24

Given a class
◦ IN methods
 One or more parameters

◦ OUT methods
 non-void return types

IN

OUT

The Three General Flow Patterns

 Direct flow

 Wrapped flow

 Unwrapped flow

25

Identified by leveraging a context-insensitive
pointer analysis (as pre-analysis)

 Direct flow

 Wrapped flow

 Unwrapped flow

26

The Three General Flow Patterns

27

class C {
void M1(Object p) {
...

}

...

Object M2() {
...
return r;

}
}

IN

O

O

Direct Flow

OUT

28

class C {
void M1(Object p) {
...

}

...

Object M2() {
...
return r;

}
}

IN

O

O

Direct Flow

• variable assignments
• field load/store
• method calls/returns

OUT

void set(Object p) {
this.f = p;

}

29

class C {
void M1(Object p) {
...

}

...

Object M2() {
...
return r;

}
}

IN

OUT

O

O

Direct Flow

Example: common
setter & getter

• variable assignments
• field load/store
• method calls/returns

Object get() {
Object r = this.f;
return r;

}

Key Insight: Causes of Imprecision

30

A B

A B BA

IN

OUT

C.I.

• Direct flowFlows: objects
merge and
propagate

31

A B

IN

OUT

C.I.

• Direct flow
• Wrapped flow
• Unwrapped flow
• Combinations

Flows: objects
merge and
propagate

Key Insight: Causes of Imprecision

A B BA

 Direct flow

 Wrapped flow

 Unwrapped flow

32

The Three General Flow Patterns

class C {
void M1(Object p) {
...

}
...
void Mi() {
o.f = q;

}
...
Object M2() {
...
return r;

}
}

33

Wrapped Flow O

W

object wrapping

OUT

IN

• variable assignments
• field load/store
• method calls/returns

W

class C {
void M1(Object p) {
...

}
...
void Mi() {
o.f = q;

}
...
Object M2() {
...
return r;

}
}

34

Wrapped Flow O

W

Example:
collection &

iterator

object wrapping

OUT

IN

• variable assignments
• field load/store
• method calls/returns

W

35

class C {
void M1(Object p) {
...

}
...
void Mi() {
o.f = q;

}
...
Object M2() {
...
return r;

}
}

Wrapped Flow O

W’

multiple object wrapping

W

OUT

IN

• variable assignments
• field load/store
• method calls/returns

 Direct flow

 Wrapped flow

 Unwrapped flow

36

The Three General Flow Patterns

37

class C {
void M1(Object p) {
...

}
...
void Mi() {
q = o.f;

}
...
Object M2() {
...
return r;

}
}

U

Unwrapped Flow

IN

OUT

object unwrapping

O

• variable assignments
• field load/store
• method calls/returns

U

38

class C {
void M1(Object p) {
...

}
...
void Mi() {
q = o.f;

}
...
Object M2() {
...
return r;

}
}

object unwrapping

O

U

Unwrapped Flow

Example: JDK
synchronized

container

IN

OUT

• variable assignments
• field load/store
• method calls/returns

U

39

class C {
void M1(Object p) {
...

}
...
void Mi() {
q = o.f;

}
...
Object M2() {
...
return r;

}
}

IN

multiple object unwrapping

O

U’

Unwrapped Flow

OUT

U

• variable assignments
• field load/store
• method calls/returns

Combinations of Three General Flows

The direct, wrapped and unwrapped flows
can be combined, e.g.,

40

IN OUT
unwrapped

flow
wrapped

flow+

O U W

41

A B

A B BA

IN

OUT

Precision-critical methods:
the methods involved in the flows

C.I.

• Direct flow
• Wrapped flow
• Unwrapped flow
• Combinations

42

A B

A B BA

IN

OUT

Identify precision-critical methods

Precision-critical methods:
the methods involved in the flows

C.I.

• Direct flow
• Wrapped flow
• Unwrapped flow
• Combinations

43

A B

A B BA

IN

OUT

A

A

IN

OUT

B

B

Identify precision-critical methods
Apply C.S. only to

Precision-critical methods:
the methods involved in the flows

C.I. C.S.

• Direct flow
• Wrapped flow
• Unwrapped flow
• Combinations

44

A B

A B BA

IN

OUT

A

A

IN

OUT

B

B

Identify precision-critical methods
Apply C.S. only to

C.I. C.S.

Precision-critical methods:
the methods involved in the flows

45

How to Analyze Flow Patterns?

We propose precision flow graph (PFG)
expresses direct, wrapped, unwrapped flows,
and their combinations, in an uniform way

How to Analyze Flow Patterns?

46

Paths in PFGFlows in Program

We propose precision flow graph (PFG)
expresses direct, wrapped, unwrapped flows,
and their combinations, in an uniform way

Precision Flow Graph (PFG)

 Statically over-approximates all the general
flows and their combinations

 Based on the results of context-insensitive
pointer analysis (pre-analysis)

47

Paths in PFGFlows in Program

How to Analyze Flow Patterns?

48

Paths in PFGFlows in Program

Simple
Graph Reachability

on PFG

Methods
Involved in
the Flows

i.e., precision-critical
methods

from IN to OUT
methods

We propose precision flow graph (PFG)
expresses direct, wrapped, unwrapped flows,
and their combinations, in an uniform way

Overview

Context-Insensitive
Pointer Analysis

PFG
Construction

Graph
Reachability

on PFG

points-to
information

which methods need
contexts

PFG

49

Context-Sensitive
Pointer Analysis

OFG
Construction

OFGPre-analysis

Main analysis

Implementation

 Written in Java (core: ~1500 LOC)

 Integrated with

 Can also be easily integrated with other
pointer analysis frameworks

 Open source: http://www.brics.dk/zipper/

50

Evaluation

 Compared to conventional context-sensitive
analysis, can ZIPPER-guided analysis
◦ preserve precision?
◦ improve efficiency?

51

Evaluation

 Compared to conventional context-sensitive
analysis, can ZIPPER-guided analysis
◦ preserve precision?
◦ improve efficiency?

 Context sensitivity: 2-object-sensitivity (2obj)
◦ Most practical high-precision pointer analysis
◦ Widely adopted (research papers and analysis frameworks)

52

Evaluation

 Compared to conventional context-sensitive
analysis, can ZIPPER-guided analysis
◦ preserve precision?
◦ improve efficiency?

 Context sensitivity: 2-object-sensitivity (2obj)
◦ Most practical high-precision pointer analysis
◦ Widely adopted (research papers and analysis frameworks)

53

Conventional: applies 2obj to all methods
ZIPPER-guided: applies 2obj to only precision-
critical methods selected by ZIPPER

Evaluation - Analyzed Programs

10 large Java programs
◦ 5 popular real-world applications

◦ 5 DaCapo benchmarks

54

JPC

http://jpc.sourceforge.net/home_home.html

Evaluation - Clients

 May-fail casting
 De-virtualization
 Method reachability
 Call graph construction

55

Widely-used clients to evaluate pointer analysis’s precision
e.g., PLDI'17, OOPSLA'17, PLDI’14, PLDI’13, POPL’11, OOPSLA'09 …

56

100%
38%

ZIPPER Conventional

Methods Analyzed Context-Sensitively (2obj)
Precision-critical methods

Results: ZIPPER vs. Conventional

57

100%
38%

ZIPPER Conventional

100%
98.8%

ZIPPER Conventional

Methods Analyzed Context-Sensitively (2obj)

Precision

Precision-critical methods

Results: ZIPPER vs. Conventional

58

100%
38%

ZIPPER Conventional

100%
98.8%

ZIPPER Conventional

Methods Analyzed Context-Sensitively (2obj)

Precision

Precision-critical methods

Results: ZIPPER vs. Conventional

C.I. 64.5%

59

100%
38%

ZIPPER Conventional

100%
98.8%

ZIPPER Conventional

Methods Analyzed Context-Sensitively (2obj)

Precision

Precision-critical methods

Results: ZIPPER vs. Conventional

C.I. 64.5%

60

100%
38%

ZIPPER Conventional

100%
98.8%

ZIPPER Conventional

ZIPPER Conventional

ZIPPER: 3.4X of speedup (up to 9.2X)

Methods Analyzed Context-Sensitively (2obj)

Precision

Analysis Time

Precision-critical methods

Results: ZIPPER vs. Conventional

C.I. 64.5%

61

100%
38%

ZIPPER Conventional

100%
98.8%

ZIPPER Conventional

ZIPPER Conventional

ZIPPER: 3.4X of speedup (up to 9.2X)

Methods Analyzed Context-Sensitively (2obj)

Precision

Analysis Time

Precision-critical methods

Results: ZIPPER vs. Conventional

C.I. 64.5%

Conclusion
 Direct, wrapped, and unwrapped flows
◦ explain where and how most imprecision is

introduced in context insensitivity

 Precision flow graph
◦ concisely models the above flows

 Implementation (http://www.brics.dk/zipper/)
◦ effectively identifies precision-critical methods

 Evaluation
◦ preserves essentially all of the precision
◦ improves efficiency significantly

62

The Parameter-Out Flow Case

63

void m(A input, B output) {
output.field = input;

}

m(a, b); // rare
b.setField(a); // common

Potential of ZIPPER

ZIPPER*: tracks flows from an IN method
only if its flowing-in objects have too many
(>50) different types

64

Identify highly precision-critical methods

bloat Time(s) #fail-cast #poly-call #reach-mtd #call-edge

Conventional 3128 1193 1427 8470 53143

Zipper 2704 1224 1449 8486 53289

Zipper* 52 1310 1511 8538 54049

More heuristics and precision-efficiency
trade-offs can be developed on top of ZIPPER

	Precision-Guided Context Sensitivity for Pointer Analysis
	Slide Number 2
	Pointer Analysis
	Uses of Pointer Analysis
	Uses of Pointer Analysis
	Context Sensitivity
	Context Sensitivity
	Context Sensitivity: Example
	Context Sensitivity: Example
	Context Sensitivity: Example
	Context Sensitivity
	Problem of Context Sensitivity (C.S.)
	Problem of Context Sensitivity (C.S.)
	Problem of Context Sensitivity (C.S.)
	Problem of Context Sensitivity (C.S.)
	Problem of Context Sensitivity (C.S.)
	Our Goal
	Challenge
	Our Key Contribution
	Our Key Contribution
	Our Key Contribution
	IN and OUT Methods
	IN and OUT Methods
	IN and OUT Methods
	The Three General Flow Patterns
	The Three General Flow Patterns
	Direct Flow
	Direct Flow
	Direct Flow
	Key Insight: Causes of Imprecision
	Key Insight: Causes of Imprecision
	The Three General Flow Patterns
	Wrapped Flow
	Wrapped Flow
	Wrapped Flow
	The Three General Flow Patterns
	Unwrapped Flow
	Unwrapped Flow
	Unwrapped Flow
	Combinations of Three General Flows
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	How to Analyze Flow Patterns?
	How to Analyze Flow Patterns?
	Precision Flow Graph (PFG)
	How to Analyze Flow Patterns?
	Overview
	Implementation
	Evaluation
	Evaluation
	Evaluation
	Evaluation - Analyzed Programs
	Evaluation - Clients
	Results: ZIPPER vs. Conventional
	Results: ZIPPER vs. Conventional
	Results: ZIPPER vs. Conventional
	Results: ZIPPER vs. Conventional
	Results: ZIPPER vs. Conventional
	Results: ZIPPER vs. Conventional
	Conclusion
	The Parameter-Out Flow Case
	Potential of ZIPPER

