
7

Understanding and Analyzing Java Reflection

YUE LI
∗
, UNSW Sydney, Australia

TIAN TAN
∗
, UNSW Sydney, Australia

JINGLING XUE, UNSW Sydney, Australia

Java reflection has been widely used in a variety of applications and frameworks. It allows a software system
to inspect and change the behaviour of its classes, interfaces, methods and fields at runtime, enabling the
software to adapt to dynamically changing runtime environments. However, this dynamic language feature
imposes significant challenges to static analysis, because the behaviour of reflection-rich software is logically
complex and statically hard to predict. As a result, existing static analysis tools either ignore reflection or
handle it partially, resulting in missed, important behaviours, i.e., unsound results. Therefore, improving or
even achieving soundness in (static) reflection analysis—an analysis that infers statically the behaviour of
reflective code—will provide significant benefits to many analysis clients, such as bug detectors, security
analyzers and program verifiers.

In this paper, we provide a comprehensive understanding of Java reflection through examining its underlying
concept, API and real-world usage, and, building on this, we introduce a new static approach to resolving Java
reflection effectively in practice. We have implemented our reflection analysis in an open-source tool, called
Solar, and evaluated its effectiveness extensively with large Java programs and libraries. Our experimental
results demonstrate that Solar is able to (1) resolve reflection more soundly than the state-of-the-art reflection
analyses; (2) automatically and accurately identify the parts of the program where reflection is resolved
unsoundly or imprecisely; and (3) guide users to iteratively refine the analysis results by using lightweight
annotations until their specific requirements are satisfied.

CCS Concepts: • Theory of computation → Program analysis; • Software and its engineering →
Object oriented languages.

Additional Key Words and Phrases: Java reflection, static analysis, points-to analysis

ACM Reference Format:
Yue Li, Tian Tan, and Jingling Xue. 2019. Understanding and Analyzing Java Reflection. ACM Trans. Softw.
Eng. Methodol. 28, 2, Article 7 (February 2019), 51 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Java reflection allows a software system to inspect and change the behaviour of its classes, interfaces,
methods and fields at runtime, enabling the software to adapt to dynamically changing runtime
environments. This dynamic language feature eases the development and maintenance of Java
programs in many programming tasks by, for example, facilitating their flexible integration with
the third-party code and their main behaviours to be configured according to a deployed runtime
∗This work was mostly done while these authors were at UNSW Sydney. Both authors are now affiliated with Aarhus
University, Denmark.

Authors’ addresses: Yue Li, Aarhus University, Denmark, yueli@cs.au.dk; Tian Tan, Aarhus University, Denmark,
tiantan@cs.au.dk; Jingling Xue, UNSW Sydney, Australia, jingling@cs.au.dk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
1049-331X/2019/02-ART7 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

7:2 Yue Li, Tian Tan, and Jingling Xue

environment in a decoupled way. Due to such advantages, reflection has been widely used in a
variety of Java applications and frameworks [32, 69].

Static analysis is widely recognized as a fundamental tool for bug detection [17, 43], security
vulnerability analysis [1, 36], compiler optimization [14, 59], program verification [4, 12], and
program debugging and understanding [34, 58]. However, when applying static analysis to Java
programs, reflection poses a major obstacle [32, 33, 38, 51]. If the behavior of reflective code is
not resolved well, much of the codebase will be rendered invisible for static analysis, resulting in
missed, important behaviours, i.e., unsound analysis results [37]. Therefore, improving or even
achieving soundness in (static) reflection analysis—an analysis that infers statically the behavior of
reflective code—will provide significant benefits to all the client analyses as just mentioned above.

1.1 Challenges

Developing effective reflection analysis for real-world programs remains a hard problem, widely
acknowledged by the static analysis community [37]:

“Reflection usage and the size of libraries/frameworks make it very difficult to scale
points-to analysis to modern Java programs.” [64];
“Reflection makes it difficult to analyze statically.” [48];
“In our experience [18], the largest challenge to analyzing Android apps is their use of
reflection ...” [2];
“Static analysis of object-oriented code is an exciting, ongoing and challenging research
area, made especially challenging by dynamic language features, a.k.a. reflection.” [26].

There are three reasons on why it is hard to untangle this knotty problem:
• The Java reflection API is large and its common uses in Java programs are complex. It remains
unclear how an analysis should focus on its effort on analyzing which of its reflection methods
in order to achieve some analysis results as desired.
• The dynamic behaviours of reflective calls are mainly specified by their string arguments,
which are usually unknown statically (e.g., with some string values being encrypted, read
from configuration files, or retrieved from the Internet).
• The reflective code in a Java program cannot be analyzed alone in isolation. To resolve
reflective calls adequately, a reflection analysis often works inter-dependently with a pointer
analysis [32, 33, 38, 50, 51], with each being both the producer and consumer of the other.
When some reflective calls are not yet resolved, the pointer information that is currently
available can be over- or under-approximate. Care must be taken to ensure that the reflection
analysis helps increase soundness (coverage) while still maintaining sufficient precision
for the pointer analysis. Otherwise, the combined analysis would be unscalable for large
programs.

As a result, most of the papers on static analysis for object-oriented languages, like Java, treat
reflection orthogonally (often without even mentioning its existence). Existing static analysis tools
either ignore reflection or handle it partially and ineffectively.

1.2 Previous Approaches

Initially, reflection analysis mainly relies on string analysis, especially when the string arguments
to reflective calls are string constants, to resolve reflective targets, i.e., methods or fields reflectively
accessed. Currently, this mainstream approach is still adopted by many static analysis tools for Java,
such as Soot,Wala, Chord and Doop. However, as described in Section 1.1, string analysis will fail
in many situations where string arguments are unknown (Figure 5), resulting in limited soundness

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

Understanding and Analyzing Java Reflection 7:3

and precision. As a static analysis, a (more) sound reflection analysis is one that allows (more)
true reflective targets (i.e., targets that are actually accessed at runtime) to be resolved statically.
In practice, any reflection analysis must inevitably make a trade-off among soundness, precision,
scalability, and (sometimes) automation.
In addition, existing reflection analyses [2, 8, 20, 22, 28, 32, 35, 38, 51, 68] cannot answer two

critical questions that are raised naturally, in practice: Q(1) how sound is a given reflection analysis
and Q(2) which reflective calls are resolved unsoundly or imprecisely?We argue for their importance
as follows:

• If Q(1) is unanswered, users would be unsure (or lose confidence) about the effectiveness of
the analysis results produced. For example, a bug detector that reports no bugs may actually
miss many bugs if some reflective calls are resolved unsoundly.
• If Q(2) is unanswered, users would not have an opportunity to contribute in improving the
precision and soundness of the analysis results, e.g., by providing some user annotations. For
some client analyses (e.g., verification), soundness is required.

1.3 Contributions

In this paper, we attempt to uncover the mysterious veil of Java reflection and change the informed
opinion in the program analysis community about static reflection analysis: “Java reflection is a
dynamic feature which is nearly impossible to handle effectively in static analysis”. Specifically, we
make the following contributions:

• We provide a comprehensive understanding of Java reflection through examining its under-
lying concept (what it is), interface (how its API is designed), and real-world usage (how it is
used in practice). As a result, we will provide the answers to several critical questions, which
are somewhat related, including:
– What is reflection, why is it introduced in programming languages, and how is Java
reflection derived from the basic reflection concept?

– Which methods of the Java reflection API should be analyzed carefully and how are they
related, as the API is large and complex (with about 200 methods)?

– How is reflection used in real-world Java programs and what can we learn from its common
uses? We have conducted a comprehensive study about reflection usage in a set of 16
representative Java programs by examining their 1,423 reflective call sites. We report
7 useful findings to enable the development of improved practical reflection analysis
techniques and tools in future research.

• We introduce a new static analysis approach, called Solar (soundness-guided reflection analy-
sis), to resolve Java reflection effectively in practice. As shown in Figure 1, Solar has three
unique advantages compared with previous work:
– Solar is able to yield significantly more sound results than the state-of-the-art reflec-
tion analysis. In addition, Solar allows its soundness to be reasoned about when some
reasonable assumptions are met.

– Solar is able to accurately identify the parts of the program where reflection is analyzed
unsoundly or imprecisely, making it possible for users to be aware of the effectiveness of
their analysis results (as discussed in Section 1.2).

– Solar provides a mechanism to guide users to iteratively refine the analysis results by
adding lightweight annotations until their specific requirements are satisfied, enabling
reflection to be analyzed in a controlled manner.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

7:4 Yue Li, Tian Tan, and Jingling Xue

Previous Reflection Analysis

?
SOLAR: Soundness-Guided Reflection Analysis(a) (b)

Achieved Soundness
Identified Unsoundness

? Unknown Soundness Boundary
Known Soundness Boundary

Fig. 1. Reflection analysis: prior work vs. Solar.

• We have implemented Solar in Doop [8] (a state-of-the-art pointer analysis tool for Java)
and released it as an open-source tool. In particular, Solar can output its reflection analysis
results with the format that is supported by Soot [63] (a popular framework for analyzing
Java and Android applications), allowing Soot’s clients to use Solar’s results directly.
• We conduct extensive experiments on evaluating Solar’s effectiveness with large Java
applications and libraries. Our experimental results provide convincing evidence on the
ability of Solar in analyzing Java reflection effectively, in practice.

1.4 Organization

The rest of this paper is organized as follows. We will start by providing a comprehensive under-
standing of Java reflection in Section 2. Building on this understanding, we give an overview of
Solar in Section 3 and introduce its underlying methodology in Section 4. Then, we formalize
Solar in Section 5, describe its implementation in Section 6, and evaluate its effectiveness in
Section 7. Finally, we discuss the related work in Section 8 and conclude in Section 9.

2 UNDERSTANDING JAVA REFLECTION

Java reflection is a useful but complex language feature. To gain a deep understanding about Java
reflection, we examine it in three steps. First, we describe what Java reflection is, why we need
it, and how it is proposed (Section 2.1). Second, we explain how Java reflection is designed to be
used, i.e., its API (Section 2.2). Finally, we investigate comprehensively how it has been used in
real-world Java applications (Section 2.3). After reading this section, the readers are expected to
develop a whole picture about the basic mechanism behind Java reflection, understand its core API
design, and capture the key insights needed for developing practical reflection analysis tools.

2.1 Concept

Reflection, which has long been studied in philosophy, represents one kind of human abilities for
introspecting and learning their nature. Accordingly, a (non-human) object can also be endowed
with the capability of such self-awareness. This arises naturally in artificial intelligence: “Here I
am walking into a dark room. Since I cannot see anything, I should turn on the light". As explained
in [54], “such thought fragment reveals a self-awareness of behaviour and state, one that leads to a

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

Understanding and Analyzing Java Reflection 7:5

Metasystem
Sof

The Domain
of S

Computational
System S

Reify

Reflect

and/or
Support Actions in

Answer Questions about

the Domain and S itself

The Domain
of S

Computational
System S

and/or
Support Actions in

Answer Questions about

the Domain

Computational System and its Domain(a) Reflective System and its Domain(b)

Fig. 2. Computational vs. reflective computational systems.

change in that selfsame behaviour and state”, which allows an object to examine itself and leverage
the meta-level information to figure out what to do next.

Similarly, when we enable programs to avail themselves of such reflective capabilities, reflective
programs will also allow the programs to observe and modify properties of their own behaviour.
Thus, let a program be self-aware — this is the basic motivation of the so-called computational
reflection, which is also considered as the reflection used in the area of programming languages [15].

In the rest of this section, we will introduce what computational reflection is (Section 2.1.1), what
reflective abilities it supports (Section 2.1.2), and how Java reflection is derived from it (Section 2.1.3).

2.1.1 Computational Reflection. Reflection, as a concept for computational systems, dates from
Brian Smith’s doctoral dissertation [53]. Generally, as shown in Figure 2(a), a computational system
is related to a domain and it answers questions about and/or support actions in the domain [39].
As described in [39], a computational system “incorporates internal structures representing the
domain. These structures include data representing entities and relations in the domain and a
program describing how these data may be manipulated”.
A computational system S is said to be also a reflective system, as shown in Figure 2(b), if the

following two conditions are satisfied:
• First, the system S has its own representation, known as its self-representation or metasystem,
in its domain as a kind of data to be examined and manipulated.
• Second, the system S and its representation are causally connected: a change to the repre-
sentation implies a change to the system, and vice versa.

The base system S should be reified into its representation before its metasystem can operate.
Then the metasystem examines and manipulates its behaviour using the reified representation. If
any changes are made by the metasystem, then the effects will also be reflected in the behavior of
the corresponding base system.

2.1.2 Reflective Abilities. Generally, (computational) reflection is the ability of a program to examine
andmodify the structure and behavior of a program at runtime [23, 40]. Thus, it endows the program
the capabilities of self-awareness and self-adapting. These two reflective abilities are known as
introspection and intercession, respectively, and both require a reification mechanism to encode a
program’s execution state as data first [15].
• Introspection: the ability of a program to observe, and consequently, reason about its own
execution state.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

7:6 Yue Li, Tian Tan, and Jingling Xue

• Intercession: the ability of a program to modify its own execution state or alter its own
interpretation or meaning.

Providing full reflective abilities as shown above is challenging in practice, as this will introduce
both implementation complexities and performance problems [10]. Thus, in modern programming
languages like Java, reflective abilities are only partially supported [6, 19].

2.1.3 Java Reflection. Java reflection supports introspection and very limited intercession; in
particular, an introspection step is usually followed by behaviour changes such as object creation,
method invocation and attribute manipulation [9, 19]. Note that some other researchers hold a
different view that Java reflection does not support intercession [6, 16], as they adopt a more strict
definition of intercession, which implies the ability to modify the self-representation of a program.
Despite its limited reflective abilities, Java reflection is able to allow programmers to break

the constraints of staticity and encapsulation, enabling the program to adapt to dynamically
changing runtime environments. As a result, Java reflection has been widely used in real-world
Java applications to facilitate flexibly different programming tasks, such as reasoning about control
(i.e., about which computations to pursue next) [19], interfacing (e.g., interaction with GUIs or
database systems) [21, 46], and self-activation (e.g., through monitors) [13].

Java reflection does not have a reify operation as described in Section 2.1.1 (Figure 2(b)) to turn
the basic (running) system (including stack frames) into a representation (data structure) that is
passed to a metasystem. Instead, a kind of metarepresentation, based on metaobjects, exists when
the system starts running and persists throughout the execution of the system [19].

A metaobject is like the reflection in a mirror: one can adjust one’s smile (behaviour changes) by
looking at oneself in a mirror (introspection). In Section 2.2, we will look at how Java reflection
uses metaobjects and its API to facilitate reflective programming.

1 A a = new A();

2 String cName, mName, fName = ...;

3 Class clz = Class.forName(cName);

4 Object obj = clz.newInstance();

5 Method mtd = clz.getDeclaredMethod(mName, A.class);

6 Object l = mtd.invoke(obj, a);

7 Field fld = clz.getField(fName);

8 X r = (X)fld.get(a);

9 fld.set(null, a);

Fig. 3. An example of reflection usage in Java.

2.2 Interface

We first use a toy example to illustrate some common uses of the Java reflection API (Section 2.2.1).
We then delve into the details of its core methods, which are relevant to (and thus should be handled
by) any reflection analysis (Section 2.2.2).

2.2.1 An Example. There are two kinds of metaobjects: Class objects and member objects. In
Java reflection, one always starts with a Class object and then obtain its member objects (e.g.,
Method and Field objects) from the Class object by calling its corresponding accessor methods
(e.g., getMethod() and getField()).

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

Understanding and Analyzing Java Reflection 7:7

Class::forName

Class object flows to (as a receiver object) Class-Retrieving Methods
Member-Retrieving Methods
Reflective-Action Methods

.class
Object::getClass

ClassLoader::loadClass Class::getMethod
Class::getDeclaredMethods
Class::getMethods

Class::getField
Class::getDeclaredField

Class::getDeclaredFields
Class::getFields

Class::getConstructor
Class::getDeclaredConstructor

Class::getDeclaredConstructors
Class::getConstructors

Constructor::newInstance

Method::invoke

Field::get
Field::set

Class::newInstance

Proxy::newProxyInstance

Array::newInstance

Array::get
Array::set

Class Object

Constructor Object

Method Object

Field Object

Array Object
Member object flows to (as a receiver object)
Class/Array object flows to (as an argument)

Others

Class::getDeclaredMethod

Fig. 4. Overview of core Java reflection API.
1

In Figure 3, the metaobjects clz, mtd and fld are instances of the metaobject classes Class,
Method and Field, respectively. Constructor can be seen as Method except that the method name
“<init>” is implicit. Class allows an object to be created reflectively by calling newInstance().
As shown in line 4, the dynamic type of obj is the class (type) represented by clz (specified by
cName). In addition, Class provides accessor methods such as getDeclaredMethod() in line 5 and
getField() in line 7 to allow the member metaobjects (e.g., of Method and Field) related to a
Class object to be introspected. With dynamic invocation, a Method object can be commanded to
invoke the method that it represents (line 6). Similarly, a Field object can be commanded to access
or modify the field that it represents (lines 8 and 9).

2.2.2 Core Java Reflection API. In reflection analysis, we are concerned with reasoning about
how reflection affects the control and data flow information in the program. For example, if
a target method (say m) that is reflectively invoked in line 6 in Figure 3 cannot be resolved
statically, the call graph edge from this call site to methodm (control flow) and the values passed
interprocedurally from obj and a to this and the parameter ofm (data flow), respectively, will be
missing. Therefore, we should focus on the part of the Java reflection API that affects a pointer
analysis, a fundamental analysis that statically resolves the control and data flow information in a
program [27, 30–32, 38, 41, 42, 51, 52, 60–62].

It is thus sufficient to consider only the pointer-affecting methods in the Java reflection API. We
can divide such reflective methods into three categories (Figure 4):

1We summarize and explain the core reflection API (25 methods) that is critical to static analysis. A more complete reflection
API list (181 methods) is given in [26] without explanations though.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

7:8 Yue Li, Tian Tan, and Jingling Xue

• class-retrieving methods, which create Class objects, e.g., forName() in line 3 in Figure 3.
• member-retrieving methods, which introspect and retrieve member metaobjects, i.e., Method
(Constructor) and Field objects from a Class object, e.g., getDeclaredMethod() in line 5
and getField() in line 7 in Figure 3.
• reflective-action methods, which affect the pointer information in the program reflectively,
e.g., newInstance(), invoke(), get() and set() in lines 4, 6, 8 and 9 in Figure 3 for creating
an object, invoking a method, accessing and modifying a field, respectively.

Class-Retrieving Methods. Everything in Java reflection begins with Class objects and they are
returned by calling class-retrieving methods. There are many class-retrieving methods in the Java
reflection API. In Figure 4, only the four most widely used ones are listed explicitly.

Note that forName() (loadClass()) returns a Class object representing a class that is specified
by the value of its string argument. The Class object returned by o.getClass() and A.class
represents the dynamic type (class) of o and A, respectively.

Member-Retrieving Methods. Class provides a number of accessor methods for retrieving its
member metaobjects, i.e., the Method (Constructor) and Field objects. In addition, these member
metaobjects can be used to introspect the methods, constructors and fields in their target class.
Formally, these accessor methods are referred to here as the member-retrieving methods.
As shown in Figure 4, for each kind of member metaobjects, there are four member-retrieving

methods. We take a Method object as an example to illustrate these methods, whose receiver objects
are the Class objects returned by the class-retrieving methods.

• getDeclaredMethod(String, Class[]) returns a Method object that represents a declared
method of the target Class object with the name (formal parameter types) specified by the
first (second) parameter (line 5 in Figure 3).
• getMethod(String, Class[]) is similar to getDeclaredMethod(String, Class[]) ex-
cept that the returned Method object is public (either declared or inherited). If the target
Class does not have a matching method, then its superclasses are searched first recursively
(bottom-up) before its interfaces (implemented).
• getDeclaredMethods() returns an array of Method objects representing all the methods
declared in the target Class object.
• getMethods() is similar to getDeclaredMethods() except that all the public methods (either
declared or inherited) in the target Class object are returned.

Reflective-Action Methods. As shown in Figure 4, a total of nine reflective-action methods that
can possibly modify or use (as their side effects) the pointer information in a program are listed.
Accordingly, Table 1 explains how these methods affect the pointer information by giving their
side effects on the pointer analysis.

In Figure 4, the first five reflective-action methods use four kinds of metaobjects as their receiver
objects while the last four methods use Class or Array objects as their arguments. Below we briefly
examine them in the order given in Table 1.

• The side effect of newInstance() is allocating an object with the type specified by its
metaobject clz or ctor (say A) and initializing it via a constructor of A, which is the default
constructor in the case of Class::newInstance() and the constructor specified explicitly
in the case of Constructor::newInstance().
• The side effect of invoke() is a virtual call when the first argument of invoke(), say o, is
not null. The receiver object is o as shown in the “Side Effect” column in Table 1. When o is
null, invoke() should be a static call.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

Understanding and Analyzing Java Reflection 7:9

Table 1. Nine reflective-action methods and their side effects on the pointer analysis, assuming that the

target class of clz and ctor is A, the target method of mtd is m and the target field of fld is f.

Simplified Method Calling Scenario Side Effect

Class::newInstance o = clz.newInstance() o = new A()

Constructor::newInstance o = ctor.newInstance({arg1, ...}) o = new A(arg1, ...)

Method::invoke a = mtd.invoke(o, {arg1, ...}) a = o.m(arg1, ...)

Field::get a = fld.get(o) a = o.f

Field::set fld.set(o, a) o.f = a

Proxy::newProxyInstance o = Proxy.newProxyInstance(...) o = new Proxy$*(...)

Array::newInstance o = Array.newInstance(clz, size) o = new A[size]

Array::get a = Array.get(o, i) a = o[i]

Array::set Array.set(o, i, a) o[i] = a

• The side effects of get() and set() are retrieving (loading) and modifying (storing) the
value of a instance field, respectively, when their first argument, say o, is not null; otherwise,
they are operating on a static field.
• The side effect of newProxyInstance() is creating an object of a proxy class Proxy$*, and
this proxy class is generated dynamically according to its arguments (containing a Class
object). Proxy.newProxyInstance() can be analyzed according to its semantics. A call
to this method returns a Proxy object, which has an associated invocation handler object
that implements the InvocationHandler interface. A method invocation on a Proxy object
through one of its Proxy interfaces will be dispatched to the invoke()method of the object’s
invocation handler.
• The side effect of Array.newInstance() is creating an array (object) with the compo-
nent type represented by the Class object (e.g., clz in Table 1) used as its first argument.
Array.get() and Array.set() are retrieving and modifying an index element in the array
object specified as their first argument, respectively.

2.3 Reflection Usage

The Java reflection API is rich and complex. We have conducted an empirical study to understand
reflection usage in practice in order to guide the design and implementation of a sophisticated
reflection analysis described in this paper. In this section, we first list the focus questions in
Section 2.3.1, then describe the experimental setup in Section 2.3.2, and finally, present the study
results in Section 2.3.3.

2.3.1 Focus Questions. We address the following seven focus questions in order to understand
how Java reflection is used in the real world.

• Q1. Existing reflection analyses resolve reflection by analyzing statically the string arguments
of class-retrieving and member-retrieving method calls. How often are these strings constants

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

7:10 Yue Li, Tian Tan, and Jingling Xue

and how often can non-constant strings be resolved by a simple string analysis that models
string operations such as “+” and append()?
• Q2. Existing reflection analyses ignore the member-retrieving methods that return an array
of member metaobjects. Is it necessary to handle such methods?
• Q3. Existing reflection analyses usually treat reflective method calls and field accesses as
being non-static. Does this treatment work well in real-world programs? Specifically, how
often are static reflective targets used in reflective code?
• Q4. In [38], intraprocedural post-dominating cast operations are leveraged to resolve newInstance()
when its class type is unknown. This approach is still adopted by many reflection analysis
tools. Does it generally work in practice?
• Q5. The Java reflection API contains many class-retrieving methods for returning Class
objects. Which ones should be focused on by an effective reflection analysis?
• Q6. The core part of reflection analysis is to resolve all the nine reflective-action methods
(Table 1) effectively. What are the reflective-action methods that are most widely used and
how are the remaining ones used in terms of their relative frequencies?
• Q7. What are new insights on handling Java reflection (from this paper)?

2.3.2 Experimental Setup. We have selected a set of 16 representative Java programs, including
three popular desktop applications, javac-1.7.0, jEdit-5.1.0 and Eclipse-4.2.2 (denoted
Eclipse4), two popular server applications, Jetty-9.0.5 and Tomcat-7.0.42, and all eleven
DaCapo benchmarks (2006-10-MR2) [3]. Note that the DaCapo benchmark suite includes an older
version of Eclipse (version 3.1.2). We exclude its bloat benchmark since its application code is
reflection-free. We consider lucene instead of luindex and lusearch separately since these two
benchmarks are derived from lucene with the same reflection usage.
We consider a total of 191 methods in the Java reflection API (version 1.6), including the ones

mainly from package java.lang.reflect and class java.lang.Class.
We use Soot [63] to pinpoint the calls to reflection methods in the bytecode of a program.

To understand the common reflection usage, we consider only the reflective calls found in the
application classes and their dependent libraries but exclude the standard Java libraries. To in-
crease the code coverage for the five applications considered, we include the jar files whose
names contain the names of these applications (e.g., *jetty*.jar for Jetty) and make them avail-
able under the process-dir option supported by Soot. For Eclipse4, we use org.eclipse.core.
runtime.adaptor.EclipseStarter to let Soot locate all the other jar files used.
We manually inspect the reflection usage in a program in a demand-driven manner, starting

from its reflective-action methods, assisted by Open Call Hierarchy in Eclipse, by following their
backward slices. For a total of 609 reflective-action call sites examined, 510 call sites for calling
class-retrieving methods and 304 call sites for calling member-retrieving methods are tracked and
studied. As a result, a total of 1,423 reflective call sites, together with some nearby statements, are
examined in our study.

2.3.3 Results. Below we describe our seven findings on reflection usage as our answers to the
seven focus questions listed in Section 2.3.1, respectively. We summarize our findings as individual
remarks, which are expected to be helpful in guiding the development of practical reflection analysis
techniques and tools in future research.

Q1. String Constants and String Manipulations. In class-retrieving methods, Class.forName()
and loadClass() each have a String parameter to specify the target class. In member-retrieving
methods, getDeclaredMethod(String,...) and getMethod(String,...) each return a Method

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

Understanding and Analyzing Java Reflection 7:11

0%

20%

40%

60%

80%

100%

an
tl

r

ch
ar

t

ec
lip

se fo
p

h
sq

ld
b

jy
th

o
n

lu
ce

n
e

p
m

d

xa
la

n

ec
lip

se
4

ja
va

c

je
d

it

je
tt

y

to
m

ca
t

av
e

ra
ge

an
tl

r

ch
ar

t

ec
lip

se fo
p

h
sq

ld
b

jy
th

o
n

lu
ce

n
e

p
m

d

xa
la

n

ec
lip

se
4

ja
va

c

je
d

it

je
tt

y

to
m

ca
t

av
e

ra
ge

Unknown String Manipulation Unresolved String Manipulation Resolved String Constant

(a) Calls to class-retrieving methods (b) Calls to member-retrieving methods

Fig. 5. Classification of the String arguments of two class-retrieving methods, forName() and

loadClass(), and four member-retrieving methods, getMethod(), getDeclaredMethod(), getField() and
getDeclaredField().

object named by its first parameter; getDeclaredField(String) and getField(String) each
return a Field object named by its single parameter.

As shown in Figure 5, string constants are commonly used when calling the two class-retrieving
methods (34.7% on average) and the four member-retrieving methods (63.1% on average). In the
presence of string manipulations, many class/method/field names are unknown exactly. This is
mainly because their static resolution requires precise handling of many different operations e.g.,
subString() and append(). In fact, many cases are rather complex and thus cannot be handled
well by simply modeling the java.lang.String-related API. Thus, Solar does not currently
handle string manipulations. However, the incomplete information about class/method/field names
(i.e., partial string information) can be exploited beneficially [22, 51].

We also found that many string arguments are Unknown (55.3% for calling class-retrieving
methods and 25.1% for calling member-retrieving methods, on average). These are the strings that
may be read from, say, configuration files, command lines, or even Internet URLs. Finally, string
constants are found to be more frequently used for calling the four member-retrieving methods than
the two class-retrieving methods: 146 calls to getDeclaredMethod() and getMethod(), 27 calls to
getDeclaredField() and getField() in contrast with 98 calls to forName() and loadClass().
This suggests that the analyses that ignore string constants flowing into some member-retrieving
methods may fail to exploit such valuable information and thus become imprecise.

Remark 1. Resolving reflective targets by string constants does not always work. On average, only
49% reflective call sites (where string arguments are used to specify reflective targets) use string
constants. In addition, fully resolving non-constant string arguments by string manipulation,
although mentioned elsewhere [5, 38], may be hard to achieve, in practice.

Q2. Retrieving an Array of Member Objects. As introduced in Section 2.2.2, half of member-
retrieving methods (e.g., getMethods()) return an array of member metaobjects. Although not as
frequently used as the ones returning single member metaobject (e.g., getMethod()), they play an
important role in introducing new program behaviours in some applications. For example, in the
two Eclipse programs studied, there are four invoke() call sites called on an array of Method

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

7:12 Yue Li, Tian Tan, and Jingling Xue

0%

20%

40%

60%

80%

100%

an
tl

r

ch
ar

t

ec
lip

se fo
p

h
sq

ld
b

jy
th

o
n

lu
ce

n
e

p
m

d

xa
la

n

ec
lip

se
4

ja
va

c

je
d

it

je
tt

y

to
m

ca
t

av
e

ra
ge

Instance Methods Static Methods

(a) Method::invoke() call sites
av

e
ra

ge

an
tl

r

ch
ar

t

ec
lip

se fo
p

h
sq

ld
b

jy
th

o
n

lu
ce

n
e

p
m

d

xa
la

n

ec
lip

se
4

ja
va

c

je
d

it

je
tt

y

to
m

ca
t

av
e

ra
ge

Instance Fields Static Fields

(b) Field::get()/set() call sites

Fig. 6. The percentage frequency distribution of reflective-action call sites on instance and static members.

objects returned from getMethods() and 15 fld.get() and fld.set() call sites called on an array
of Field objects returned by getDeclaredFields(). Through these calls, dozens of methods are
invoked and hundreds of fields are modified reflectively. Ignoring such methods as in prior work
[38] and tools (Bddbddb,Wala, Soot) may lead to significantly missed program behaviours by the
analysis.

Remark 2. In member-retrieving methods, get(Declared)Methods/Fields/Constructors(), which
return an array of member metaobjects, are usually ignored by most of existing reflection analysis
tools. However, they play an important role in certain applications for both method invocations
and field manipulations.

Q3. Static or Instance Members. In the literature on reflection analysis [32, 38, 51, 68], reflective
targets are mostly assumed to be instance members. Accordingly, calls to the reflective-action
methods such as invoke(), get() and set(), are usually considered as virtual calls, instance field
accesses, and instance field modifications, respectively (see Table 1 for details). However, in real
programs, as shown in Figure 6, on average, 37% of the invoke() call sites are found to invoke static
methods and 50% of the get()/set() call sites are found to access/modify static fields. Thus in
practice, reflection analysis should distinguish both cases and also be aware of whether a reflective
target is a static or instance member, since the approaches for resolving both cases are usually
different.

Remark 3. Static methods/fields are invoked/accessed nearly as frequently as instance methods/-
fields in Java reflection, even though the latter has received more attention in the literature. In
practice, reflection analysis should distinguish the two cases and adopt appropriate approaches
for handling them.

Q4. Resolving newInstance() by Casts. In Figure 3, when cName is not a string constant, the
(dynamic) type of obj created by newInstance() in line 4 is unknown. For this case, Livshits
et al. [38] propose to infer the type of obj by leveraging the cast operation that post-dominates
intra-procedurally the newInstance() call site. If the cast type is A, the type of obj must be A or

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

Understanding and Analyzing Java Reflection 7:13

one of its subtypes assuming that the cast operation does not throw any exceptions. This approach
has been implemented in many analysis tools such as Wala, Bddbddb and Elf.

However, as shown in Figure 7, exploiting casts this way does not always work. On average, 28%
of newInstance() call sites (obtained by manually inspecting all the related reflective code) have no
such intra-procedural post-dominating casts. As newInstance() is the most widely used reflective-
action method (see Q6), its unresolved call sites may significantly affect the soundness of the
analysis, as discussed in Section 7.5.1. Hence, we need a better solution to handle newInstance().

0%

20%

40%

60%

80%

100%

an
tl
r

ch
ar
t

ec
lip
se fo
p

h
sq
ld
b

jy
th
o
n

lu
ce
n
e

p
m
d

xa
la
n

ec
lip
se
4

ja
va
c

je
d
it

je
tt
y

to
m
ca
t

av
er
ag
e

Unresolved Resolved

Fig. 7. newInstance() resolution by leveraging intra-procedural post-dominating casts.

Remark 4. Resolving newInstance() calls by leveraging their intra-procedural post-dominating
cast operations fails to work for 28% of the newInstance() call sites found. As newInstance()
affects critically the soundness of reflection analysis (Remark 6), a more effective approach for its
resolution is required.

Q5. Class-Retrieving Methods. Figure 8 shows the percentage frequency distribution of eight
class-retrieving methods. “Unknown” is included since we failed to find the class-retrieving methods
for some reflective-action calls (e.g., invoke()) even by using Eclipse’s Open Call Hierarchy
tool. For the first 12 programs, the six class-retrieving methods as shown (excluding “Unknown”
and “Others”) are the only ones leading to reflective-action calls. For the last two, Jetty and
Tomcat, “Others” stands for defineClass() in ClassLoader and getParameterTypes() in Method.
Finally, getComponentType() is usually used in the form of getClass().getComponentType()
for creating a Class object argument for Array.newInstance().
On average, Class.forName(), .class, getClass() and loadClass() are the top four most

frequently used (48.1%, 18.0%, 17.0% and 9.7%, respectively). A class loading strategy can be con-
figured in forName() and loadClass(). In practice, forName() is often used by the system class
loader and loadClass() is usually overwritten in customer class loaders, especially in framework
applications such as Tomcat and Jetty.

Remark 5. Reflection analysis should handle Class.forName(), getClass(), .class, and
loadClass(), which are the four major class-retrieving methods for creating Class objects.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

7:14 Yue Li, Tian Tan, and Jingling Xue

0% 20% 40% 60% 80% 100%

average

tomcat

jetty

jedit

javac

eclipse4

xalan

pmd

lucene

jython

hsqldb

fop

eclipse

chart

antlr

Unknown Others Class::getComponentType

Proxy::getProxyClass ClassLoader::loadClass Class::forName

Object::getClass .class

Fig. 8. Class-retrieving methods.

In addition, getComponentType() should also be modeled if Array-related reflective-action
methods are analyzed, as they are usually used together.

Q6. Reflective-Action Methods. Figure 9 depicts the percentage frequency distribution of all the
nine reflective-action methods in all the programs studied. We can see that newInstance() and
invoke() are the ones that are most frequently used (46.3% and 32.7%, respectively, on average).
Both of them are handled by existing static analysis tools such as Doop, Soot,Wala and Bddbddb.
However, Field- and Array-related reflective-action methods, which are also used in many

programs, are ignored by most of these tools. Their handling is often necessary. For example,
Eclipse (org.eclipse.osgi.util.NLS) uses Field.set() to initialize a large number of (non-
primitive) fields of all given classes. Some JDK code (e.g., java.util.AbstractCollection) uses
Array.newInstance() to reflectively create a new non-primitive array whose type depends on
the given argument.
As far as we know, Field- and Array-related reflective-action methods are handled only by

Elf [32], Solar [33] and Doop [51].

Remark 6. Reflection analysis should at least handle newInstance() and invoke() as they are
the most frequently used reflective-action methods (79% on average), which will significantly affect
a program’s behavior, in general; otherwise, much of the codebase may be invisible for analysis.
Effective reflection analysis should also consider Field- and Array-related reflective-action
methods, as they are also commonly used.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

Understanding and Analyzing Java Reflection 7:15

0% 20% 40% 60% 80% 100%

average

tomcat

jetty

jedit

javac

eclipse4

xalan

pmd

lucene

jython

hsqldb

fop

eclipse

chart

antlr

Array::set Array::get Field::set
Field::get Method::invoke Array::newInstance
Proxy::newProxyInstance Constructor::newInstance Class::newInstance

Fig. 9. Reflective-action methods.

Q7. Self-Inferencing Property. As illustrated by the program given in Figure 3, the names of its
reflective targets are specified by the string arguments (e.g., cName, mName and fName) at the class-
retrieving and member-retrieving reflective calls. Therefore, string analysis has been a popular
approach for static reflection analysis in the last decade. However, if the value of a string is unknown
statically (e.g., read from external files or command lines), then the related reflective calls, includ-
ing those to newInstance(), may have to be ignored, rendering the corresponding codebase or
operations invisible to the analysis (note that conservatively estimating those unresolved reflective
calls to have any effect would cause to invoke any methods, making the analysis too imprecise to
be scalable). To improve precision, in this case, the last resort is to exploit the existence of some
intra-procedurally post-dominating cast operations on a call to newInstance() in order to deduce
the types of objects reflectively created (Q4).
However, in our study, we find that there are many other rich hints about the behaviors of

reflective calls at their usage sites. Such hints can be and should be exploited to make reflection
analysis more effective, even when some string values are partially or fully unknown. In the
following, we first look at three real example programs to examine what these hints are and expose
a so-called self-inferencing property inherent in these hints. Finally, we explain why self-inferencing
property is naturally inherent in most Java reflection code and discuss its potential in making
reflection analysis more effective.

Example 2.1 (Reflective Method Invocation (Figure 10)). The method name (the first argument
of getMethod() in line 174) is statically unknown as part of it is read from command line cmd.
However, the target method (represented by method) can be deduced from the second argument
(parameters) of the corresponding reflective-action call invoke() in line 175. Here, parameters
is an array of objects, with only one element (line 155). By querying the pointer analysis and also
leveraging the type information in the program, we know that the type of the object pointed to
by this is FrameworkCommandInterpreter, which has no subtypes. As a result, we can infer that

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

7:16 Yue Li, Tian Tan, and Jingling Xue

Application: Eclipse (v4.2.2)
Class:org.eclipse.osgi.framework.internal.core.FrameworkCommandInterpreter

123 public Object execute(String cmd) {...

155 Object[] parameters = new Object[] {this}; ...

167 for (int i = 0; i < size; i++) {

174 method = target.getClass().getMethod("_" + cmd, parameterTypes);

175 retval = method.invoke(target, parameters); ...}

228 }

Fig. 10. Self-inferencing property for a reflective method invocation, deduced from the number and dynamic

types of the components of the one-dimensional array argument, parameters, at a invoke() call site.

the descriptor of the target method in line 175 must have only one argument and its actual type
must be FrameworkCommandInterpreter or one of its supertypes.

Application: Eclipse (v4.2.2)
Class:org.eclipse.osgi.framework.internal.core.Framework

1652 public static Field getField(Class clazz, ...) {

1653 Field[] fields = clazz.getDeclaredFields(); ...

1654 for (int i = 0; i < fields.length; i++) { ...

1658 return fields[i]; } ...

1662 }

1682 private static void forceContentHandlerFactory(...) {

1683 Field factoryField = getField(URLConnection.class, ...);

1687 java.net.ContentHandlerFactory factory =

(java.net.ContentHandlerFactory) factoryField.get(null); ...

1709 }

Fig. 11. Self-inferencing property for a reflective field access, deduced from the type casted on the returned

value of, and the null argument used at, a get() call site.

Example 2.2 (Reflective Field Access (Figure 11)). In line 1683, factoryField is obtained as a Field
object from an array of Field objects created in line 1653 for all the fields in URLConnection. In line
1687, the object returned from get() is cast to java.net.ContentHandlerFactory. Based on its
cast operation and null argument, we know that the call to get()may only access the static fields of
URLConnection with the type java.net.ContentHandlerFactory, its supertypes or its subtypes.
Without the self-inferencing property at the get() call site, all the fields in URLConnection must
be assumed to be accessed conservatively by an analysis.

Example 2.3 (Reflective Field Modification (Figure 12)). Like the case in Figure 11, the field object
in line 290 is also read from an array of field objects created in line 302. This code pattern appears
one more time in line 432 in the same class, i.e., org.eclipse.osgi.util.NLS (not shown here).
According to the two arguments, null and value, provided at set() (line 290), we can deduce

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

Understanding and Analyzing Java Reflection 7:17

Application: Eclipse (v4.2.2)
Class:org.eclipse.osgi.util.NLS

300 static void load(final String bundleName, Class<?> clazz) {

302 final Field[] fieldArray = clazz.getDeclaredFields();

336 computeMissingMessages(..., fieldArray, ...); ...

339 }

267 static void computeMissingMessages(..., Field[] fieldArray,...) {

272 for (int i = 0; i < numFields; i++) {

273 Field field = fieldArray[i];

284 String value = "NLS missing message: " + ...;

290 field.set(null, value); } ...

295 }

Fig. 12. Self-inferencing property for a reflective field modification, deduced from the null argument and

the dynamic type of the value argument at a set() call site.

that the target field (to be modified in line 290) is static (from null) and its declared type must be
java.lang.String or one of its supertypes (from the type of value).

Definition 2.4 (Self-Inferencing Property). For each reflective-action call site, its self-inferencing
property comprises the information that can be used to infer its reflective targets, which consists of
(1) all the information of its arguments (including receiver object), namely the number of arguments,
their types, and (2) the possible downcasts on its returned values, and (3) the possible string values
statically resolved at its corresponding class-retrieving and member-retrieving call sites.

We argue that the self-inferencing property is inherent in most Java reflection code due to the
characteristics of object-oriented programming and the Java reflection API. For example, the de-
clared type of the object reflectively returned by get() and invoke() or created by newInstance()
is always java.lang.Object. Therefore, the returned object must be first cast to a specific type
before it is used as a regular object, except when its dynamic type is java.lang.Object or it will
be used only as an receiver for the methods inherited from java.lang.Object; otherwise, the
compilation would fail. As another example, the descriptor of a target method reflectively called at
invoke() must be consistent with what is specified by its second argument (e.g., parameters in
line 175 of Figure 10); otherwise, exceptions would be thrown at runtime. These constraints should
be exploited to enable resolving reflection in a disciplined way.
The self-inferencing property not only helps resolve reflective calls more effectively when the

values of string arguments are partially known (e.g., when either a class name or a member name is
known), but also provides an opportunity to resolve some reflective calls even if the string values
are fully unknown. For example, in some Android apps, class and method names for reflective
calls are encrypted for benign or malicious obfuscation, which “makes it impossible for any static
analysis to recover the reflective call” [48]. However, this appears to be too pessimistic in our setting,
because, in addition to the string values, some other self-inferencing hints are possibly available
to facilitate reflection resolution. For example, given (A)invoke(o, {...}), the class type of the
target method can be inferred from the dynamic type of o (by pointer analysis), and the declared
return type and descriptor of the target method can also be deduced from A and {...}, respectively,
as discussed above.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

7:18 Yue Li, Tian Tan, and Jingling Xue

Remark 7. Self-inferencing property is inherent in most Java reflection code, but has not been
fully exploited in analyzing reflection before. We will show how this property can be leveraged in
different ways (for analyzing different kinds of reflective methods as shown in Sections 4.2 and 4.3)
to make reflection analysis significantly more effective.

3 OVERVIEW OF SOLAR

We first introduce the design goal of, challenges faced by, and insights behind Solar in Section 3.1.
We then present an overview of the Solar framework including its basic working mechanism and
the functionalities of its components in Section 3.2.

3.1 Goals, Challenges and Insights

Design Goals. As already discussed in Section 1.3, Solar is designed to resolve reflection as
soundly as possible (i.e., more soundly or even soundly when some reasonable assumptions are
met) and accurately identify the reflective calls that are resolved unsoundly.

Challenges. In addition to the challenges described in Section 1.1, we must also address another
critical problem: it is hard to reason about the soundness of Solar and identify accurately which
parts of the reflective code have been resolved unsoundly.

If one target method at one reflective call is missed by the analysis, it may be possible to identify
the statements that are unaffected and thus still handled soundly. However, the situation will
deteriorate sharply if many reflective calls are resolved unsoundly. In the worst case, all the other
statements in the program may be handled unsoundly. To play safe, the behaviors of all statements
must be assumed to be under-approximated in the analysis, as we do not know which value at
which statement has been affected by the unsoundly resolved reflective calls.

Let us consider the program in Figure 10 as an example. If the invoke() call site (at line 175)
cannot be resolved soundly, many runtime behaviors will be missed by static analysis. When its
target methods are invoked reflectively, the objects pointed to by parameters, target and retval
could all be modified, affecting potentially the other parts of the program, which may also finally
change the value of target and its associated reflective behaviors. If there are many such unsoundly
resolved reflective calls distributed in different parts of the program, then more unsoundness will
end up being “propagated” throughout the program, making the analysis hard to know which parts
of the program have been actually soundly analyzed.

Insights. To achieve the design goals of Solar, we first need to ensure that as few reflective calls
are resolved unsoundly as possible. This will reduce the propagation of unsoundness to as few
statements as possible in the program. As a result, if Solar reports that some analysis results are
sound (unsound), then they will be likely sound (unsound). This is the key to enabling Solar to
achieve practical precision in terms of both soundness reasoning and unsoundness identification.
To resolve most or even all reflective calls soundly, Solar needs to maximally leverage the

available information (the string values at reflective calls are inadequate as they are often unknown
statically) in the program to help resolve reflection. Meanwhile, Solar should resolve reflection
precisely. Otherwise, Solar may be unscalable due to too many false reflective targets introduced.
In Sections 4.2 and 4.3, we will describe how Solar leverages the self-inferencing property in a
program (Definition 2.4) to analyze reflection with good soundness and precision.
Finally, Solar should be aware of the conditions under which a reflective target cannot be

resolved. In other words, we need to formulate a set of soundness criteria for different reflection
methods based on different resolution strategies adopted. If the set of criteria is not satisfied, Solar

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

Understanding and Analyzing Java Reflection 7:19

Scalable

Unscalable
Collective Inference

Lazy Heap Modeling

PROBE

Soundness Criteria

Precision CriteriaViolated

Lightweight
Annotations

List%of%unsound%and%(ranked)%
imprecise%reflective%calls%

&%
The%related%calls%with%hints%
for%the%reflective%targets

Soundness & Precision
Interpreter

Reflective Targets
Inference Engine

Unsound & Imprecise Calls
Locator

Soundness%
Proven

Satisfied

Java
Programs

SOLAR

Guide

(Optional)

Fig. 13. Overview of Solar.

can mark the corresponding reflective calls as the ones that are resolved unsoundly. Otherwise,
Solar can guarantee the soundness of the reflection analysis under some reasonable assumptions
(Section 4.1).

3.2 The Solar Framework

Figure 13 gives an overview of Solar. Solar consists of four core components: an inference engine
for discovering reflective targets, an interpreter for soundness and precision, a locator for unsound
and imprecise calls, and a Probe (a lightweight version of Solar). In the rest of this section, we
first introduce the basic working mechanism of Solar and then briefly explain the functionality of
each of its components.

3.2.1 Working Mechanism. Given a Java program, the inference engine resolves and infers the
reflective targets that are invoked or accessed at all reflective-actionmethod call sites in the program,
as soundly as possible. There are two possible outcomes. If the reflection resolution is scalable
(under a given time budget), the interpreter will proceed to assess the quality of the reflection
resolution under soundness and precision criteria. Otherwise, Probe, a lightweight version of
Solar, would be called upon to analyze the same program again. As Probe resolves reflection
less soundly but much more precisely than Solar, its scalability can be usually guaranteed. We
envisage providing a range of Probe variants with different trade-offs among soundness, precision
and scalability, so that the scalability of Probe can be always guaranteed.

If the interpreter confirms that the soundness criteria are satisfied, Solar reports that the reflection
analysis is sound. Otherwise, the locator will be in action to identify which reflective calls are
resolved unsoundly. In both cases, the interpreter will also report the reflective calls that are resolved

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

7:20 Yue Li, Tian Tan, and Jingling Xue

Unsound List:
org.hsqldb.Function:getValue/invoke/1

org.hsqldb.Function:<init>/getMethods/0
org.hsqldb.Function:<init>/forName/0

org.hsqldb.Function:getValue/invoke/1
org.hsqldb.Function:<init>/getMethods/0

java.io.ObjectStreamClass.newInstance

java.io.ObjectInputStream.resolveClass/forName/0

 10 items in total … … … …

Imprecise List:
newInstance (Type Casting)

343 Objecct getValue () {

mtd.invoke(null,arg);
… …

 c = Class.forName(cn);

 Method[] mtds =

 for(;i<mtds.length;i++) {
 Method m = mtds[i];

if(m.getName().

mtd = m;

Class: org.hsqldb.Function

185

352

169

179

181
182
184

equals(mn) &&)
186

 Other Reflective-Action Methods

/Constructor.newInstance/0

targets: 1391 (java.io.Serializable)

targets: 244

147 Function () {…

…

… …

… …
c.getMethods();

… …

}

…

… …
}

Fig. 14. An example output from Solar when its soundness/precision criteria are violated. The unsoundly

and imprecisely resolved reflective calls are shown in the Unsound List and Imprecise List respectively.

imprecisely if the precision criteria are violated. This allows potential precision improvements to
be made for the analysis.

The locator not only outputs the list of reflective calls that are resolved unsoundly or imprecisely
in the program but also pinpoints the related class-retrieving and member-retrieving method calls
of these “problematic” calls, which contain the hints to guide users to add annotations, if possible.
Figure 14 depicts an example output.
As will be demonstrated in Section 7, for many programs, Solar is able to resolve reflection

soundly under some reasonable assumptions. However, for certain programs, like other existing
reflection analyses, Solar is unscalable. In this case, Probe (a lightweight version of Solar whose
scalability can be guaranteed as explained above) is applied to analyze the same program. Note
that Probe is also able to identify the reflective calls that are resolved unsoundly or imprecisely in
the same way as Solar. Thus, with some unsound or imprecise reflective calls identified by Probe
and annotated by users, Solar will re-analyze the program, scalably after one or more iterations of
this “probing” process. As discussed in Section 7, the number of such iterations is usually small,
e.g., only one is required for most of the programs evaluated.
For some programs, users may choose not to add annotations to facilitate reflection analysis.

Even in this case, users can still benefit from the Solar approach, for two reasons. First, Probe is
already capable of producing good-quality reflection analysis results, more soundly than string
analysis. Second, users can understand the quality of these results by inspecting the locator’s output,
as discussed in Section 1.2.

3.2.2 Basic Components. Their functionalities are briefly explained below.

Reflective Target Inference Engine. We employ two techniques to discover reflective targets: col-
lective inference for resolving reflective method invocations (invoke()) and field accesses/modifica-
tions (get()/set()) and lazy heapmodeling for handling reflective object creation (newInstance()).

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

Understanding and Analyzing Java Reflection 7:21

Both techniques exploit the self-inferencing property found in our reflection usage study (Sec-
tion 2.3.3) to resolve reflection in a disciplined manner with good soundness and precision. We
will explain their approaches in Sections 4.2 and 4.3, respectively, and further formalize them in
Section 5.4.

Soundness and Precision Interpreter. Solar currently adopts a simple but practical scheme to
measure precision, in terms of the number of targets resolved at a reflective-action call site. Solar
allows users to specify a threshold value in advance to define the imprecision that can be tolerated
for each kind of reflective-action calls, forming its precision criteria. Suppose 100 is given as the
threshold value for invoke(). An invoke() call site will be reported as being imprecisely resolved
if more than 100 targets have been found at the call site. If no threshold is provided, Solar will
report all the reflective-action sites (with their resolved targets), starting from the most imprecise
one to the most precise one, and let the users decide which ones are resolved imprecisely.

The soundness criteria are formulated in Section 5.5 in terms of conditions under which various
inference rules (adopted by the inference engine) can be applied soundly.

Unsound and Imprecise Call Locator. A reflective-action reflective call is identified as being
imprecisely resolved if the number of resolved targets is higher than permitted by its corresponding
precision criterion. Similarly, a reflective-action reflective call is marked as being unsoundly resolved
if its corresponding soundness criterion is violated.

To facilitate user annotations for an imprecisely or unsoundly resolved reflective-action reflective
call, the locator also pinpoints its corresponding class-retrieving and member-retrieving method
call sites. It can be difficult to understand the semantics of a reflective-action call by reading just
the code at its vicinity. Often, more hints about its semantics are available at or around its class-
retrieving and member-retrieving method call sites, which may reside in different methods or even
classes in the program.

Example 3.1. Figure 14 illustrates Solar’s output for a real program. In the figure, the output is
shown at the left-hand side and the related reflective code about the unsoundly resolved invoke()
call is shown at the right-hand side. In the “Unsound List” in the output, the invoke() (reflective-
action method) call site in method getValue is the unsoundly resolved call identified. Its class-
retrievingmethod (forName()) andmember-retrievingmethod (getMethods()) call sites, which are
located in the constructor of class org.hsqldb.Function, are also highlighted. At the right-hand
side of the figure, we can see that the hints for annotations are available around the class-retrieving
and member-retrieving call sites (e.g., lines 169, 184 and 185) rather than the reflective-action call
site (line 352). Based on those hints, users can easily annotate for this unsoundly resolved invoke()
by, e.g., finding out the values of cn (line 169) and mn (line 185).

We will further explain how Solar identifies unsoundly resolved reflective calls in Section 4.4
and how users are guided to add annotations in Section 4.5.

Probe. Probe is a lightweight version of Solar that weakens the power of its inference engine.
Probe changes its inference strategies in both collective inference and lazy heap modeling, by
resolving reflection more precisely but less soundly. Thus, the scalability of Probe can be usually
guaranteed as fewer false reflective targets are introduced. We will formalize Probe based on the
formalism of Solar in Section 5.7.

4 THE SOLAR METHODOLOGY

Wefirst define precisely a set of assumptionsmade (Section 4.1). Thenwe examine themethodologies
of collective inference (Section 4.2) and lazy heap modeling (Section 4.3) used in Solar’s inference

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

7:22 Yue Li, Tian Tan, and Jingling Xue

engine. Finally, we explain how Solar identifies unsoundly resolved reflective calls (Section 4.4) and
how doing so helps guide users to add lightweight annotations to facilitate a subsequent reflection
analysis (Section 4.5).

4.1 Assumptions

There are four reasonable assumptions. The first one is commonly made on static analysis [55]
and the next two are made previously on reflection analysis for Java [38]. Solar adds one more
assumption to allow reflective allocation sites to be modeled lazily. Under the four assumptions, it
becomes possible to reason about the soundness and imprecision of Solar.

Assumption 1 (Closed-World). Only the classes reachable from the class path at analysis time
can be used during program execution.

This assumption is reasonable since we cannot expect static analysis to handle all classes that a
program may download from the Internet and load at runtime. In addition, Java native methods are
excluded as well.

Assumption 2 (Well-Behaved Class Loaders). The name of the class returned by a call to
Class.forName(cName) equals cName.

This assumption says that the class to be loaded by Class.forName(cName) is the expected
one specified by the value of cName, thus avoiding handling the situation where a different class
is loaded by, e.g., a malicious custom class loader. How to handle custom class loader statically
is still an open hard problem. Note that this assumption also applies to loadClass(), another
class-retrieving method shown in Figure 4.

Assumption 3 (Correct Casts). Type cast operations applied to the results of calls to reflective-
action methods are correct, without throwing a ClassCastException.

This assumption has been recently demonstrated as practically valid through extensive experi-
ments in [26].

Assumption 4 (Object Reachability). Every object o created reflectively in a call to newInstance()
flows into (i.e., will be used in) either (1) a type cast operation . . . = (T) v or (2) a call to a reflective-
actionmethod, get(v), set(v,. . .) or invoke(v,. . .), where v points to o, along every execution
path in the program.

Cases (1) and (2) represent two kinds of usage points at which the class types of object o will be
inferred lazily. Specifically, case (1) indicates that o is used as a regular object, and case (2) says that
o is used reflectively, i.e., flows to the first argument of different reflective-action calls as a receiver
object. This assumption does not cover only one rare situation where o is created but never used
later. As validated in Section 7.2, Assumption 4 is found to hold for almost all reflective allocation
sites in the real code.

4.2 Collective Inference

Figure 15 gives an overview of collective inference for handling reflective method invocations and
field accesses/modifications. Essentially, we see how the reflective-action method calls invoke(),
get() and set() are resolved. A Class object C is first created for the target class named cName.
Then a Method (Field) object M (F) representing the target method (field) named mName (fName)
in the target class of C is created. Finally, at some reflective call sites, e.g., invoke(), get() and
set(), the target method (field) is invoked (accessed) on the target object o, with the arguments,
... or t.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

Understanding and Analyzing Java Reflection 7:23

.invoke(o, .get(o) .set(o, t)

Class

.getField(fName)Method .getMethod(mName,= Field =

c Class.forName(cName)

c1

=

m1

Target Class Type Propagation
Target Member Name Propagation
Target Class Type Inference
Target Member Signature Inference

Class-Retrieving Methods
Member-Retrieving Methods
Reflective-Action Methods

...m) f c2

(A) t =)... f2(A) t = f1

Fig. 15. Collective Inference in Solar.

Solar works as part of a pointer analysis, with each being both the producer and consumer of
the other. By exploiting the self-inferencing property (Definition 2.4) inherent in the reflective code,
Solar employs the following two component analyses:

Target Propagation (Marked by Solid Arrows) Solar resolves the targets (methods or fields)
of reflective calls, invoke(), get() and set(), by propagating the names of their target
classes and methods/fields (e.g., those pointed by cName, mName and fName if statically known)
along the solid lines into the points symbolized by circles.

Target Inference (Marked by Dashed Arrows) By using Target Propagation alone, a targetmem-
ber name (blue circle) or its target class type (red circle) at a reflective call site may be missing,
i.e., unknown, due to the presence of input-dependent strings (Figure 5). If the target class
type (red circle) is missing, Solar will infer it from the dynamic type(s) of the target object o
(obtained by pointer analysis) at invoke(), get() or set() (when o != null). If the target
member name (blue circle) is missing, Solar will infer it from (1) the dynamic types of the
arguments of the target call, e.g., ... of invoke() and t of set(), and/or (2) the downcast
on the result of the call, such as (A) at invoke() and get().

Example 4.1. Let us illustrate Target Inference by considering t = (A) f1.get(o) in Figure 15.
If a target field name fName is known but its target class type (i.e., red circle of f1) is missing, we
can infer it from the types of all pointed-to objects o′ by o. If B is one such a type, then a potential
target class of o is B or any of its supertypes. If the target class type of f1 is B but a potential target
field name (i.e., blue circle of f1) is missing, we can deduce it from the downcast (A) to resolve the
call to t = o.f, where f is a member field in B whose type is A or a supertype or subtype of A. A
supertype is possible because a field (whose declared type is this supertype) may point to an object
of type A or a subtype of A.

In Figure 15, if getMethods() (getFields()) is called as a member-retrieving method instead,
then an array of Method (Field) objects will be returned so that Target Propagation from it is
implicitly performed by pointer analysis. All the other methods in Class for introspecting method-
s/fields/constructors are handled similarly.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

7:24 Yue Li, Tian Tan, and Jingling Xue

Resolution Principles. To balance soundness, precision and scalability in a disciplined manner,
collective inference resolves the targets at a reflective-action method call site (Figure 15) if and only
if one of the following three conditions is met:

• Both its target class type (red circle) and target member name (blue circle) are made available
by target propagation (solid arrow) or target inference (dashed arrow).
• Only its target class type (red circle) is made available by target propagation (solid arrow) or
target inference (dashed arrow).
• Only its target member name (blue circle) is made available by both target propagation (solid
arrow) and target inference (dashed arrow).

In practice, the first condition is met by many calls to invoke(), get() and set(). In this case,
the number of spurious targets introduced can be significantly reduced due to the simultaneous
enforcement of two constraints (the red and blue circles).
To increase the inference power of Solar, as explained in Section 3.1, we will also resolve

a reflective-action call under the one of the other two conditions (i.e., when only one circle is
available). The second condition requires only its target class type to be inferable, as a class (type)
name that is prefixed with its package name is usually unique. However, when only its target
member name (blue circle) is inferable, we insist both its name (solid arrow) and its descriptor
(dashed arrow) are available. In a large program, many unrelated classes may happen to use the
same method name. Just relying only on the name of a method in the last condition may cause
imprecision.

If a reflective-action call does not satisfy any of the above three conditions, then Solar will flag
it as being unsoundly resolved, as described in Section 4.4.

4.3 Lazy Heap Modeling

As shown in Section 2.3.3, reflective object creation, i.e., newInstance() is the most widely used
reflective-action method. Lazy heap modeling (LHM), illustrated in Figure 16, is developed to
facilitate its target inference and the soundness reasoning for Solar.

There are three cases. Let us consider Cases (II) and (III) first (to ease understanding, we discuss
Case (I) after explaining these two cases). Usually, an object, say o, created by newInstance() will
be used later either regularly or reflectively as shown in Cases (II) and (III), respectively. In Case
(II), since the declared type of o is java.lang.Object, o is first cast to a specific type before used
for calling methods or accessing fields as a regular object. Thus, o will flow to some cast operations.
In Case (III), o is used in a reflective way, i.e., as the first argument of a call to a reflective-action
method, invoke(), get() or set(), on which the target method (field) is called (accessed). This
appears to be especially commonly used in Android apps.
For these two cases, we can leverage the information at o’s usage sites to infer its type lazily

and also make its corresponding effects (on static analysis) visible there. As for the (regular) side
effect that may be made by o along the paths from newInstance() call site to its usage sites, we
use Case (I) to cover this situation.

Now, we examine these Cases (I) – (III), which are highlighted in Figure 16, one by one, in more
detail. If cName at c = Class.forName(cName) is unknown, Solar will create a Class object cu
that represents this unknown class and assign it to c. On discovering that c1 points to a cu at an
allocation site i (v = c1.newInstance()), Solar will create an abstract object oui of an unknown
type for the site to mark it as being unresolved so far. Subsequently, oui will flow into Cases (I) –
(III).

In Case (I), the returned type of oui is declared as java.lang.Object. Before oui flows to a cast
operation, the only side effect that can be made by this object is to call some methods declared in

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

Understanding and Analyzing Java Reflection 7:25

Class c = Class.forName(cName)

i: Object v = c1.newInstance() Method m = c2.getDeclaredMethod(mName, ...)

i ou

cu

unknown

i oA

i oB

i oD

Type Object Location

A
B

i

D
i
i

Pointed by
v2

v3, v4
v4

Case I

?

r = v1.toString()getClass()s1:

s2: A a = (A) v2
s3: B b = (B) v3

Case II

s4: (C) m1.invoke(v4, args)Case III

Abstract Heap Objects
of newInstance()

are created lazily
(at LHM points)

Class-Retrieving Methods
Member-Retrieving Methods

Reflective-Action Methods

LHM Points Flows To

Fig. 16. Lazy heap modeling (LHM). The abstract objects, oAi, o
B
i and o

D
i, for newInstance() are created lazily

at the two kinds of LHM (usage) points in Cases (II) and (III), where A and B have no subtypes and m1 is

declared in D with one subtype B, implying that the dynamic types of the objects pointed by v4 is D or B.

java.lang.Object. In terms of reflection analysis, only the two pointer-affecting methods shown
in Figure 16 need to be considered. Solar handles both soundly, by returning (1) an unknown
string for v1.toString() and (2) an unknown Class object for v1.getClass(). Note that clone()
cannot be called on v1 of type java.lang.Object (without a downcast being performed on v1
first).

Let us consider Cases (II) and (III), where each statement, say Sx , is called an LHM point, containing
a variable x into which oui flows. In Figure 16, we have x ∈ {v2, v3, v4}. Let lhm(Sx) be the set
of class types discovered for the unknown class u at Sx by inferring from the cast operation at
Sx as in Case (II) or the information available at a call to (C) m1.invoke(v4, args) (e.g., on
C, m1 and args) as in Case (III). For example, given S2v2: A a = (A) v2, lhm(S2v2) contains A
and its subtypes. To account for the side effect of v = c1.newInstance() at Sx lazily, we add
(conceptually) a statement, x = new T(), for every T ∈ lhm(Sx), before Sx . Thus, oui is finally split
into and thus aliased with n distinct abstract objects, oT1i ,. . . , oTni , where lhm(Sx) = {T1, . . . ,Tn},
such that x will be made to point to all these new abstract objects.

Figure 16 illustrates lazy heap modeling for the case when neither A nor B has subtypes and the
declaring class for m1 is discovered to be D (i.e., c2 in Figure 16 represents class D), which has one
subtype B. Thus, Solar will deduce that lhm(S2v2) = {A}, lhm(S3v3) = {B} and lhm(S4v4) = {B,D}.
Note that in Case (II), oui will not flow to a and b due to the cast operations.

As java.lang.Object contains no fields, all field accesses to oui will only be made on its lazily
created objects. Therefore, if the same concrete object represented by oui flows to both Sx1 and Sx2 ,

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

7:26 Yue Li, Tian Tan, and Jingling Xue

then lhm(Sx1) ∩ lhm(Sx2) , ∅. To handle the alias information soundly, for each type inferred at
LHM points w.r.t. a given newInstance() call site, we only create one object lazily. This implies
that x1 and x2 will point to a common object lazily created. For example, in Figure 16, v3 and v4
points to oBi since lhm(S3v3) ∩ lhm(S4v4) = {oBi}. As a result, the alias relation between x1. f and
x2. f is correctly maintained, where f is a field of oui .

1""Object"createObj(String"cName)"{
Class"c"="Class.forName(cName);
return"c.newInstance();"

}

5""Method"getMtd(String"cName,"String"mName)"{
6"""""Class"c"="Class.forName(cName);
7"""""return"c.getMethod(mName,…);"
8""}

9""void"foo(B"b,"C"c,"…")"{
10"""""Object"v"="createObj(cName1);"
11"""""if"(…)"{
12"""""""""A"a"="(A)"v;"

13"""""}"else"{"

14"""""""""Method"m"="getMtd(cName2,mName2);
15"""""""""m.invoke(v,new"Object[]{b,c});
16"""""}
17""}

 …

 …

2
3
4

Fig. 17. An example for illustrating LHM in Solar.

Example 4.2. In Figure 17, Solarwill model the newInstance() call in line 3 lazily (as cName1 in
line 10, then cName in line 2, are statically unknown) by returning an object ou3 of an unknown type
u. Note that ou3 flows into two kinds of usage points: the cast operation in line 12 and the invoke()
call in line 15. In the former case, Solar will infer u to be A and its subtypes in line 12. In the latter
case, Solar will infer u based on the information available in line 15 by distinguishing three cases.
(1) If cName2 is known, then Solar deduces u from the known class in cName2. (2) If cName2 is
unknown but mName2 is known, then Solar deduces u from the known method name in mName2
and the second argument new Object[] {b,c} of the invoke() call site. (3) If both cName2 and
mName2 are unknown (given that the types of ou3 are already unknown), then Solar will flag the
invoke() call in line 15 as being unsoundly resolved, detected automatically by verifying one of
the soundness criteria, i.e., Condition (4) in Section 5.5.

Discussion. Under Assumption 4, we need only to handle the three cases in Figure 16 to establish
whether a newInstance() call has been modeled soundly or not. The rare exception (which breaks
Assumption 4) is that oui is created but never used later (where no hints are available). To achieve
soundness in this rare case, the corresponding constructor (of the dynamic type of oui) must be
annotated to be analyzed statically unless ignoring it will not affect the points-to information to be
obtained. Again, as validated in Section 7.2, Assumption 4 is found to be very practical.

4.4 Unsound Call Identification

Intuitively, we mark a reflective-action reflective call as being unsoundly resolved when Solar
has exhausted all its inference strategies to resolve it, but to no avail. In addition to Case (3) in
Example 4.2, let us consider another case in Figure 16, except that c2 and mName are assumed to be
unknown. Then m1 at s4: m1.invoke(v4, args)will be unknown. Solarwill mark it as unsoundly
resolved, since just leveraging args alone to infer its target methods may cause Solar to be too
imprecise to scale (Section 4.2).
The formal soundness criteria that are used to identify unsoundly resolved reflective calls are

defined and illustrated in Section 5.5.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

Understanding and Analyzing Java Reflection 7:27

4.5 Guided Lightweight Annotation

As shown in Example 3.1, Solar can guide users to the program points where hints for annotations
are potentially useful for unsoundly or imprecisely resolved reflective calls. As these “problematic”
call sites are the places in a program where reflective-action methods are invoked, we can hardly
extract the information there to know the names of the reflective targets, as they are specified
at the corresponding class-retrieving and member-retrieving call sites (also called the annotation
sites), which may not appear in the same method or class (as the “problematic call sites”). Thus,
Solar is designed to automatically track the flows of metaobjects from the identified “problematic”
call sites in a demand-driven way to locate all the related annotation sites.

In Solar, annotations are only added for the unsoundly resolved reflective-action call sites which
are few and identified accurately. As a result, the number of required annotations (for achieving
soundness) is significantly less than that required in [38], which simply asks for annotations when
the string argument of a reflective call is statically unknown. This is further validated in Section 7.3.

5 FORMALISM

We formalize Solar, as illustrated in Figure 13, for RefJava, which is Java restricted to a core subset
of its reflection API. Solar is flow-insensitive but context-sensitive. However, our formalization is
context-insensitive for simplicity. We first define RefJava (Section 5.1), give a road map for the
formalism (Section 5.2) and present some notations used (Section 5.3). We then introduce a set
of rules for formulating collective inference and lazy heap modeling in Solar’s inference engine
(Section 5.4). Based on these rules, we formulate a set of soundness criteria (Section 5.5) that enables
reasoning about the soundness of Solar (Section 5.6). Finally, we describe how to instantiate Probe
from Solar (Section 5.7), and handle static class members (Section 5.8).

5.1 The RefJava Language

RefJava consists of all Java programs (under Assumptions 1 – 4) except that the Java reflection API
is restricted to the seven core reflection methods: one class-retrieving method Class.forName(),
two member-retrieving methods getMethod() and getField(), and four reflective-action methods
for reflective object creation newInstance(), reflective method invocation invoke(), reflective
fields access get() and modification set().

The soundness of pointer analysis for non-reflective Java (defined in terms of the the statements
in Figure 20) is well established in the literature [51, 57]. RefJava is an extension with the above
seven reflective methods added.

Our formalism is designed to allow its straightforward generalization to the entire Java reflection
API. As is standard, a Java program is represented only by five kinds of statements in the SSA
form, as shown in Figure 20. For simplicity, we assume that all the members (fields or methods)
of a class accessed reflectively are its instance members, i.e., o , null in get(o), set(o,t) and
invoke(o,. . .) in Figure 15. We will formalize how to handle static members in Section 5.8.

5.2 Road Map

As depicted in Figure 18, Solar’s inference engine, which consists of five components, works
together with a pointer analysis. The arrow←→ between a component and the pointer analysis
means that each is both a producer and consumer of the other.

Let us take an example to see how this road map works. Consider the reflective-action call t =
f1.get(o) in Figure 15. If cName and fName are string constants, Propagation will create a Field
object (pointed to by f1) carrying its known class and field information and pass it to Target Search
(1). If cName or fName is not a constant, a Field object marked as such is created and passed to

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

7:28 Yue Li, Tian Tan, and Jingling Xue

Inference

Transformation

Pointer
Analysis

Propagation

Lazy
Heap

Modeling

Target
Search

1

4

23 5a

b

Fig. 18. Solar’s inference engine: five components and their inter-component dependences (depicted by

black arrows). The dependences between Solar and pointer analysis are depicted in red arrows.

Inference (2), which will infer the missing information and pass a freshly generated Field object
enriched with the missing information to Target Search (3). Then Target Search maps a Field
object to its reflective target f in its declaring class (4). Finally, Transformation turns the reflective
call t = f1.get(o) into a regular statement t = o.f and passes it to the pointer analysis (5).
Note that Lazy Heap Modeling handles newInstance() based on the information discovered by
Propagation (a) or Inference (b).

5.3 Notations

In this paper, a field signature consists of the field name and descriptor (i.e., field type), and a field
is specified by its field signature and the class where it is defined (declared or inherited). Similarly,
a method signature consists of the method name and descriptor (i.e., return type and parameter
types) and, a method is specified by its method signature and the class where it is defined.

We will use the notations given in Figure 19. CO, FO andMO represent the set of Class, Field
and Method objects, respectively. In particular, ct denotes a Class object of a known class t and cu
denotes a Class object of an unknown class u. As illustrated in Figure 16, we write oti to represent
an abstract object created at an allocation site i if it is an instance of a known class t and oui of (an
unknown class type) otherwise. For a Field object, we write fts if it is a field defined in a known
class t and fus otherwise, with its signature being s . In particular, we write f _

u for f _
s in the special

case when s is unknown, i.e., s .tf = s .nf = u. Similarly, mts , mtu , mus and muu are used to represent
Method objects. We write m _

u for m _
s when s is unknown (with the return type s .tr being irrelevant,

i.e., either known or unknown), i.e., s .nm = s .p = u.

5.4 The Inference Engine of Solar
We present the inference rules used by all the components in Figure 18, starting with the pointer
analysis and moving to the five components of Solar. Due to their cyclic dependencies, the reader
is invited to read ahead sometimes, particularly to Section 5.4.6 on LHM, before returning back to
the current topic.

5.4.1 Pointer Analysis. Figure 20 gives a standard formulation of a flow-insensitive Andersen’s
pointer analysis for RefJava. There are five basic statements: new, assignment, load, store and

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

Understanding and Analyzing Java Reflection 7:29

class type t ∈ T

Field object* fts , ftu , fus , fuu ∈ FO = T̂ × Sf
field/method name nf ,nm ∈ N

field signature* s ∈ Sf = T̂ × N̂
field f ∈ F = T × T × N

field type* s .tf ∈ T̂
parameter (types) p ∈ P = T0 ∪ T1 ∪ T2 . . .

field name* s .nf ∈ N̂
method m ∈ M = T × T × N × P

Method object* mts , mtu , mus , muu ∈ MO = T̂ × Sm
local variable c, f ,m ∈ V
method signature* s ∈ Sm = T̂ × N̂ × P̂
Abstract heap object ot1,o

t
2, . . . ,o

u
1 ,o

u
2 , · · · ∈ H

return type* s .tr ∈ T̂
unknown u

method name* s .nm ∈ N̂
Class object ct , cu ∈ CO
parameter* s .p ∈ P̂

Fig. 19. Notations. Here X̂ = X ∪ {u}, where u is an unknown class type or an unknown field/method

signature. A superscript ‘*’ marks a domain that contains u.

method call, as shown in Figure 20. pt(x) represents the points-to set of a pointer x. An array object
is analyzed with its elements collapsed to a single field, denoted arr . For example, x[i] = y can be
seen as x.arr = y. In [A-New], oti uniquely identifies the abstract object created as an instance of t
at this allocation site, labeled by i. In [A-Ld] and [A-St], only the fields of an abstract object oti of a
known type t can be accessed. In Java, as explained in Section 4.3, the field accesses to oui (of an
unknown type) can only be made to the abstract objects of known types created lazily from oui at
LHM points.

i : x = new t()

{oti } ∈ pt(x)
[A-New]

x = y
pt(y) ⊆ pt(x)

[A-Cpy]

x = y.f oti ∈ pt (y)
pt(oti .f) ⊆ pt (x)

[A-Ld]
x.f = y oti ∈ pt (x)
pt (y) ⊆ pt(oti .f)

[A-St]

x = y.m(arg1, ..., argn) o _i ∈ pt (y) m′ = dispatch(o _i ,m)

{o _i } ⊆ pt(m′this) pt(m′r et) ⊆ pt (x) ∀ 1 ≤ k ≤ n : pt(argk) ⊆ pt(m′pk)
[A-Call]

Fig. 20. Rules for Pointer Analysis.

In [A-Call] (for non-reflective calls), like the one presented in [57], the function dispatch(o _
i ,m)

is used to resolve the virtual dispatch of methodm on the receiver object o _
i to bem′. There are

two cases. If oti ∈ pt(y), we proceed normally as before. For oui ∈ pt(y), it suffices to restrictm to
{toString(), getClass()}, as illustrated in Figure 16 and explained in Section 4.3. We assume

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

7:30 Yue Li, Tian Tan, and Jingling Xue

thatm′ has a formal parameterm′this for the receiver object andm
′
p1, . . . ,m

′
pn for the remaining

parameters, and a pseudo-variablem′r et is used to hold the return value ofm′.

5.4.2 Propagation. Figure 21 gives the rules for handling forName(), getMethod() and getField()
calls. Different kinds of Class, Method and Field objects are created depending on whether their
string arguments are string constants or not. For these rules, SC denotes a set of string constants
and the function toClass creates a Class object ct , where t is the class specified by the string value
returned by val (oi) (with val : H→ java.lang.String).

Class c = Class . f orName(cName) oStringi ∈ pt (cName)

pt(c) ⊇
{
{ct } if oStringi ∈ SC

{cu } otherwise ct = toClass(val(oStringi))

[P-ForName]

Method m = c′.дetMethod(mName, ...) oStringi ∈ pt (mName) c− ∈ pt (c′)

pt(m) ⊇

{mts } if c− = ct ∧ oStringi ∈ SC

{mtu } if c− = ct ∧ oStringi < SC

{mus } if c− = cu ∧ oStringi ∈ SC

{muu } if c− = cu ∧ oStringi < SC

s .tr = u

s .nm = val(o
String
i)

s .p = u

[P-GetMtd]

Field f = c′.дetField(fName) oStringi ∈ pt (fName) c− ∈ pt (c′)

pt(f) ⊇

{fts } if c− = ct ∧ oStringi ∈ SC

{ftu } if c− = ct ∧ oStringi < SC

{fus } if c− = cu ∧ oStringi ∈ SC

{fuu } if c− = cu ∧ oStringi < SC

s .tf = u

s .nf = val(o
String
i)

[P-GetFld]

Fig. 21. Rules for Propagation.

By design, ct , fts and mts will flow to Target Search but all the others, i.e., cu , fu_, f
_
u , mu_ and m _

u
will flow to Inference, where the missing information is inferred. During Propagation, only the name
of a method/field signature s (s .nm or s .nf) can be discovered but its other parts are unknown:
s .tr = s .p = s .tf = u.

5.4.3 Collective Inference. Figure 22 gives nine rules to infer reflective targets at the reflective-
action calls x = (A) m.invoke(y,args), x = (A) f.get(y), f.set(y,x), where A indicates a
post-dominating cast on their results. If A = Object, then no such cast exists. These rules fall into
three categories. In [I-InvTp], [I-GetTp] and [I-SetTp], we use the types of the objects pointed to by y to
infer the class type of a method/field. In [I-InvSig], [I-GetSig] and [I-SetSig], we use the information
available at a call site (excluding y) to infer the descriptor of a method/field signature. In [I-InvS2T],
[I-GetS2T] and [I-SetS2T], we use a method/field signature to infer the class type of a method/field.

Some notations used are in order. As is standard, t <: t ′ holds when t is t ′ or a subtype of t ′. In
[I-InvSig], [I-GetSig], [I-InvS2T] and [I-GetS2T],≪: is used to take advantage of the post-dominating cast
(A) during inference when A is not Object. By definition, u ≪: Object holds. If t ′ is not Object,
then t ≪: t ′ holds if and only if t <: t ′ or t ′ <: t holds. In [I-InvSig] and [I-InvS2T], the information
on args is also exploited, where args is an array of type Object[], only when it can be analyzed
exactly element-wise by an intra-procedural analysis. In this case, suppose that args is an array
of n elements. Let Ai be the set of types of the objects pointed to by its i-th element, args[i]. Let

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

Understanding and Analyzing Java Reflection 7:31

x = (A) m.invoke(y, args)

mu− ∈ pt (m)
pt (m) ⊇ { mt− | oti ∈ pt (y)}

[I-InvTp]

m−u ∈ pt (m)
pt (m) ⊇ { m−s | s .p ∈ Ptp(args), s .tr ≪: A, s .nm = u}

[I-InvSig]

mus ∈ pt (m) oui ∈ pt (y) s .tr ≪: A s .nm , u s .p ∈ Ptp(args)
pt (m) ⊇ { mts | t ∈ M(s .tr , s .nm , s .p)}

[I-InvS2T]

x = (A) f.дet (y)

fu− ∈ pt (f)
pt (f) ⊇ { ft− | oti ∈ pt (y)}

[I-GetTp]

f−u ∈ pt (f)
pt (f) ⊇ { f−s | s .tf ≪: A, s .nf = u}

[I-GetSig]

fus ∈ pt (f) oui ∈ pt (y) s .nf , u s .tf ≪: A

pt (f) ⊇ {fts | t ∈ F (s .nf , s .tf)}
[I-GetS2T]

f.set (y, x)

fu− ∈ pt (f)
pt (f) ⊇ { ft− | oti ∈ pt (y)}

[I-SetTp]

f−u ∈ pt (f)
pt (f) ⊇ { f−s | otj ∈ pt (x), t <: s .tf , s .nf = u}

[I-SetSig]

fus ∈ pt (f) oui ∈ pt (y) s .nf , u ot
′

j ∈ pt (x) t ′ <: s .tf
pt (f) ⊇ {fts | t ∈ F (s .nf , s .tf)}

[I-SetS2T]

Fig. 22. Rules for Collective Inference.

Pi = {t
′ | t ∈ Ai , t <: t ′}. Then Ptp(args) = P0 × · · · × Pn−1. Otherwise, Ptp(args) = ∅, implying

that args is ignored as it cannot be exploited effectively during inference.
To maintain precision in [I-InvS2T], [I-GetS2T] and [I-SetS2T], we use a method (field) signature

to infer its classes when both its name and descriptor are known. In [I-InvS2T], the function
M(str , s .nm , s .p) returns the set of classes where the method with the specified signature s is
defined if s .nm , u and s .p , u, and ∅ otherwise. The return type of the matching method is
ignored if s .tr = u. In [I-GetS2T] and [I-SetS2T], F (s .nf , s .tf) returns the set of classes where the field
with the given signature s is defined if s .nf , u and s .tf , u, and ∅ otherwise.

Let us illustrate our rules by considering two examples in Figures 17 and 23.

Example 5.1. Let usmodify the reflective allocation site in line 3 (Figure 17) to c1.newInstance(),
where c1 represents a known class, named A, so that c1A ∈ pt(c1). By applying [L-KwTp] (introduced

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

7:32 Yue Li, Tian Tan, and Jingling Xue

boolean handleException (Throwable thrown) {
Class: java.awt.EventDipatchThread

...
Class c = Class.forName(hd);
Method m = c.getMethod("handle",…);
Object h = c.newInstance();
m.invoke(h,new Object[]{thrown});

}

// hd is unresolved

Fig. 23. A simplified real code of Example 5.2 for illustrating inference rule [I-InvS2T]

later in Figure 25) to the modified allocation site, Solar will create a new object oA3 , which will flow
to line 10, so that oA3 ∈ pt(v). Suppose both cName2 and mName2 point to some unknown strings.
When [P-GetMtd] is applied to c.getMethod(mName,. . .) in line 7, a Method object, say, muu is
created and eventually assigned to m in line 14. By applying [I-InvTp] to m.invoke(v, args) in
line 15, where oA3 ∈ pt(v), Solar deduces that the target method is a member of class A. Thus, a
new object mAu is created and assigned to pt(m). Given args = new Object[]{b, c}, Ptp(args) is
constructed as described earlier. By applying [I-InvSig] to this invoke() call, Solar will add all new
Method objects mAs to pt(m) such that s .p ∈ Ptp(args), which represent the potential target methods
called reflectively at this site. □

Example 5.2. In Figure 23, hd is statically unknown but the string argument of getMethod() is
"handle", a string constant. By applying [P-ForName], [P-GetMtd] and [L-UkwTp] (Figure 25) to the
forName(), getMethod() and newInstance() calls, respectively, we obtain cu ∈ pt(c), mus ∈ pt(m)
and oui ∈ pt(h), where s indicates a signature with a known method name (i.e., "handle"). Since
the second argument of the invoke() call can also be exactly analyzed, Solar will be able to infer
the classes t where method "handle" is defined by applying [I-InvS2T]. Finally, Solar will add all
inferred Method objects mts to pt(m) at the invoke() call site. Since neither the superscript nor the
subscript of mts is u, the inference is finished and the inferred mts will be used to find out the reflective
targets (represented by it) in Target Search (Section 5.4.4). □

5.4.4 Target Search. For a Method object mts in a known class t (with s being possibly u), we define
MTD : MO→ P(M) to find all the methods matched:

MTD(mts) =
⋃
t<:t ′

mtdLookUp(t ′, s .tr , s .nm , s .p) (1)

wheremtdLookUp is the standard lookup function for finding the methods according to a declaring
class t ′ and a signature s except that (1) the return type s .tr is also considered in the search (for
better precision) and (2) any u that appears in s is treated as a wild card during the search.

Similarly, we define FLD : FO→ P(F) for a Field object fts :

FLD(fts) =
⋃
t<:t ′

f ldLookUp(t ′, s .tf , s .nf) (2)

to find all the fields matched, where f ldLookUp plays a similar role asmtdLookUp. Note that both
MTD(mts) and FLD(fts) also need to consider the super types of t (i.e., the union of the results for
all t ′ where t <: t ′, as shown in the functions) to be conservative due to the existence of member
inheritance in Java.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

Understanding and Analyzing Java Reflection 7:33

5.4.5 Transformation. Figure 24 gives the rules used for transforming a reflective call into a regular
statement, which will be analyzed by the pointer analysis.

x = m.invoke(y, args) mt− ∈ pt (m) m′ ∈ MTD(mt−) o _i ∈ pt (args)
ot
′

j ∈ pt(o
_
i .arr) t ′′ is declaring type ofm′pk t ′ <: t ′′

∀ 1 ≤ k ≤ n : {ot
′

j } ⊆ pt(argk) x = y.m′(arg1, ..., argn)
[T-Inv]

x = f.дet (y) ft− ∈ pt (f) f ∈ FLD(ft−)

x = y.f
[T-Get]

f.set (y, x) ft− ∈ pt (f) f ∈ FLD(ft−)

y.f = x
[T-Set]

Fig. 24. Rules for Transformation.

Let us examine [T-Inv] in more detail. The second argument args points to a one-dimensional
array of type Object[], with its elements collapsed to a single field arr during the pointer analysis,
unless args can be analyzed exactly intra-procedurally in our current implementation. Let arg1,. . . ,
argn be the n freshly created arguments to be passed to each potential target methodm′ found by
Target Search. Letm′p1, . . . ,m

′
pn be the n parameters (excluding this) ofm′, such that the declaring

type ofm′pk is t ′′. We include ot ′j to pt(argk) only when t ′ <: t ′′ holds in order to filter out the
objects that cannot be assigned tom′pk . Finally, the reflective target method found can be analyzed
by [A-Call] in Figure 20.

5.4.6 Lazy Heap Modeling. In Figure 25, we give the rules for lazily resolving a newInstance()
call, as explained in Section 4.3.

i : o = c′.newInstance() ct ∈ pt (c′)
{oti } ⊆ pt (o)

[L-KwTp]

i : o = c′.newInstance() cu ∈ pt (c′)
{oui } ⊆ pt (o)

[L-UkwTp]

Aa = (A) x oui ∈ pt (x) t <: A
{oti } ⊆ pt(a)

[L-Cast]

x = m.invoke(y, ...) oui ∈ pt (y) mt− ∈ pt (m) t ′ ≪: t

{ot
′

i } ⊆ pt (y)
[L-Inv]

x = f.дet(y) / f.set(y, x) oui ∈ pt (y) ft− ∈ pt (f) t ′ ≪: t

{ot
′

i } ⊆ pt (y)
[L-GSet]

Fig. 25. Rules for Lazy Heap Modeling.

In [L-KwTp], for each Class object ct pointed to by c′, an object, oti , is created as an instance
of this known type at allocation site i straightaway. In [L-UkwTp], as illustrated in Figure 16, oui is

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

7:34 Yue Li, Tian Tan, and Jingling Xue

created to enable LHM if c′ points to a cu instead. Then its lazy object creation happens at its Case
(II) by applying [L-Cast] (with oui blocked from flowing from x to a) and its Case (III) by applying
[L-Inv] and [L-GSet]. Note that in [L-Cast], A is assumed not to be Object.

5.5 Soundness Criteria

RefJava includes four reflective-action methods as described in Section 5.1. Solar is sound if their
calls are resolved soundly under Assumptions 1 – 4. Due to Assumption 4 and the illustration in
Figure 16, there is no need to consider newInstance() since it will be soundly resolved if invoke(),
get() and set() are soundly resolved. For convenience, we define:

AllKwn(v) = ∄oui ∈ pt(v) (3)

which means that the dynamic type of every object pointed to by v is known.
Recall the nine rules given for resolving (A) m.invoke(y, args), (A) f.get(y) and f.set(y,

x) in Figure 22. For the Method (Field) objects mts (fts) with known classes t , these targets can be
soundly resolved by Target Search, except that the signatures s can be further refined by applying
[I-InvSig], [I-GetSig] and [I-SetSig].
For the Method (Field) objects mus (fus) with unknown class types u, the targets accessed are

inferred by applying the remaining six rules in Figure 22. Let us consider a call to (A) m.invoke(y,
args). Solar attempts to infer the missing classes of its Method objects in two ways, by applying
[I-InvTp] and [I-InvS2T]. Such a call is soundly resolved if the following condition holds:

SC(m.invoke(y,args)) = AllKwn(y) ∨ ∀ mus ∈ pt(m) : s .nm , u ∧ Ptp(args) , ∅ (4)

If the first disjunct holds, applying [I-InvTp] to invoke() can over-approximate its target methods
from the types of all objects pointed to by y. Thus, every Method object mu_ ∈ pt(m) is refined into a
new one mt_ for every oti ∈ pt(y).
If the second disjunct holds, then [I-InvS2T] comes into play. Its targets are over-approximated

based on the knownmethod names s .nm and the types of the objects pointed to by args. Thus, every
Method object mus ∈ pt(m) is refined into a new one mts , where s .tr ≪: A and s .p ∈ Ptp(args) , ∅.
Note that s .tr is leveraged only when it is not u. The post-dominating cast (A) is considered not to
exist if A = Object. In this case, u ≪: Object holds (only for u).

Finally, the soundness criteria for get() and set() are derived similarly:

SC((A) f.get(y)) = AllKwn(y) ∨ ∀ fus ∈ pt(f) : s .nf , u ∧ A , Object (5)

SC(f.set(y,x)) = AllKwn(y) ∨ ∀ fus ∈ pt(f) : s .nf , u ∧AllKwn(x) (6)
In (5), applying [I-GetTp] ([I-GetS2T]) resolves a get() call soundly if its first (second) disjunct

holds. In (6), applying [I-SetTp] ([I-SetS2T]) resolves a set() call soundly if its first (second) disjunct
holds. By observing [T-Set], we see why AllKwn(x) is needed to reason about the soundness of
[I-SetS2T].

5.6 Soundness Proof

We prove the soundness of Solar for RefJava subject to our soundness criteria (4) – (6) under
Assumptions 1 – 4. We do so by taking advantage of the well-established soundness of Andersen’s
pointer analysis (Figure 20) stated below.

Lemma 5.3. Solar is sound for RefJava with its reflection API ignored.

If we know the class types of all targets accessed at a reflective call but possibly nothing about
their signatures, Solar can over-approximate its target method/fields in Target Search. Hence, the
following lemma holds.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

Understanding and Analyzing Java Reflection 7:35

Lemma 5.4. Solar is sound for RefJavac , the set of all RefJava programs in which cName is a
string constant in every Class.forName(cName) call.

Proof Sketch. By [P-ForName], the Class objects at all Class.forName(cName) calls are created
from known class types. By Lemma 5.3, this has four implications. (1) LHM is not needed. For the
rules in Figure 25, only [L-KwTp] is relevant, enabling every c′.newInstance() call to be resolved
soundly as a set of regular new t() calls, for all Class objects ct ∈ pt(c′). (2) In [P-GetMtd],
the Method objects mt_ of all class types t accessed at a getMethod() call are created, where mt_
symbolizes over-approximately all target methods inMTD(mt_). The same sound approximation for
getField() is made by [P-GetFld]. (3) For the nine rules given in Figure 22, only [I-InvSig], [I-GetSig]
and [I-SetSig] are applicable, since ∄mu_ ∈ m, ∄fu_ ∈ f and ∄oui ∈ y, in order to further refine their
underlying method or field signatures. (4) In Figure 24, the set of reflective targets at each call site
is over-approximated. By applying Lemma 5.3 again and noting Assumptions 1 – 3, Solar is sound
for RefJavac . □

Solar is sound subject to (4) – (6) under Assumptions 1 – 4.

Theorem 5.5. Solar is sound for RefJava if SC(c) holds at every reflective call c of the form (A)
m.invoke(y, args), (A) f.get(y) or f.set(y, x).

Proof Sketch. For reasons of symmetry, we focus only on a call, c , to (A) m.invoke(y, args).
SC(c) is given in (4). If its first disjunct is true, then all abstract objects flowing into y are created
either from known classes soundly by [L-Kwtp] or lazily from unknown classes as illustrated in
Figure 16 by applying initially [L-UkwUp] and later [L-Cast] (for Case (II)) and [L-Inv] (for Case (III)),
but soundly under Assumption 4. If its second disjunct is true, then Solar can always infer the
missing class types t in a Method object mus pointed to by pt(m) to over-approximate the set of its
target methods asMTD(mts). This takes us back to a situation equivalent to the one established in
the proof of Lemma 5.4. Thus, Solar is sound for RefJava if SC(c) holds at every reflective call c of
the form (A) m.invoke(y, args). □

5.7 Probe
We instantiate Probe, as shown in Figure 13, from Solar as follows. To make Probe resolve
reflection precisely, we refrain from performing Solar’s LHM by retaining [L-UkwTp] but ignoring
[L-Cast], [L-GSet] and [L-Inv] and abandon some of Solar’s sophisticated inference rules by disabling
[I-InvS2T], [I-GetS2T] and [I-SetS2T].

In Target Search, Probe will restrict itself to only Method objects mts and Field objects fts , where
the signature s is at least partially known.

5.8 Static Class Members

To handle static class members, our rules can be simply modified. In Figure 22, y = null. [I-InvTp],
[I-GetTp] and [I-SetTp] are not needed (by assuming pt(null) = ∅). In the soundness criteria stated
in (4) – (6), the first disjunct is removed in each case. [I-InvS2T], [I-GetS2T] and [I-SetS2T] are modified
with oui ∈ pt(y) being replaced by y = null. The rules in Figure 24 are modified to deal with
static members. In Figure 25, [L-GSet] and [L-Inv] are no longer relevant. The other rules remain
applicable. The static initializers for the classes in the closed world are analyzed. This can happen
at, say loads/stores for static fields as is the standard but also when some classes are discovered in
[P-ForName], [L-Cast], [L-GSet] and [L-Inv].

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

7:36 Yue Li, Tian Tan, and Jingling Xue

6 IMPLEMENTATION

Solar, as shown in Figure 18, works together with a pointer analysis. We have implemented Solar
on top of Doop [8], a state-of-the-art pointer analysis framework for Java. Solar is implemented
in the Datalog language. Presently, Solar consists of 303 Datalog rules written in about 2800 lines
of code.

We release Solar as an open-source tool at http://www.cse.unsw.edu.au/~corg/solar. Now Solar
has been augmented to output its reflection analysis results with the format that is supported
by Soot [63] (a popular framework for analyzing Java and Android applications), which enables
Soot’s clients to use Solar’s results directly.

Below we extend our formalism for RefJava to handle the other methods in the Java reflection
API, divided into class-retrieving, member-retrieving and reflective-action methods. For details, we
refer to the open-source implementation of Solar.

Class-Retrieving Methods. We divide the class-retrieving methods into six groups, depending how
a Class object is obtained, by (1) using a special syntax (A.class), (2) calling Object.getClass(),
(3) using a full-qualified string name (in Class.forName() and ClassLoader.loadClass()), (4)
calling proxy API Proxy.getProxyClass(), (5) calling, e.g., Class.getComponentType(), on a
metaobject, and (6) calling, e.g., sun.reflect.Reflection.getCallerClass() to introspect an
execution context. According to Section 2.3.3, the last three are infrequently used. Our current
implementation handles the class-retrieving methods in (1) – (4) plus Class.getComponentType()
in (5) since the latter is used in array-related reflective-action methods.

Member-Retrieving Methods. In addition to the two included in RefJava, there are ten more
member-retrieving methods as given in Figure 4. To show how to handle the other ten methods
based on our existing formalism (Section 5), we take getDeclaredMethod() and getMethods()
as examples as the others can be dealt with similarly. For a Method object resolved to be mts at a
getDeclaredMethod() call by Propagation, the search for buildingMTD(mts) is confined to class t
(the only change in the rules). Otherwise, the search is done as described in Section 5.4.4.

For ms = c′.getMethods(), which returns an array of Method objects, its analysis is similarly
done as m = c′.getMethod(mName) in Figure 21. We first create a placeholder array object msph so
that msph ∈ pt(ms).

As getMethods() is parameterless, we then insert a new Method object mtu (muu) into pt(msph .arr)
for every ct (cu) in pt(c′). The underlying pointer analysis will take care of how eventually an
element of such an array flows into, say m, in m.invoke(). Then the rules in Figure 22 are applicable.

Reflective-Action Methods. In addition to the four in RefJava, the following four reflective-action
methods are also analyzed. Constructor.newInstance() is handled as Class.newInstance()
except that its array argument is handled exactly as in invoke(). Its call sites are also modeled
lazily. Array.newInstance(), Array.get() and Array.set() are handled as in Table 1. Presently,
Solar does not handle Proxy.newProxyInstance() in its implementation. However, it can be
analyzed according to its semantics as described in Section 2.2.2. Recently, Fourtounis et al. [20]
introduce a static analysis approach to effectively handle more complex Java proxy cases.

7 EVALUATION

We evaluate Solar by comparing it (primarily) with two state-of-the-art reflection analyses for Java,
Doopr [51] and Elf [32]. In particular, our evaluation addresses the following research questions
(RQs):

• RQ1. How well does Solar achieve full automation without any annotations?

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

http://www.cse.unsw.edu.au/~corg/solar

Understanding and Analyzing Java Reflection 7:37

• RQ2. How well does Solar reason about the soundness and identify the unsoundly or
imprecisely resolved (or “problematic”) reflective calls?
• RQ3. How well does Solar make the trade-offs among soundness, precision and scalability
in terms of reflection analysis? In other words, can Solar resolve reflection more soundly
than Doopr and Elf with acceptable precision and efficiency?

Below we describe our experimental setup, revisit our assumptions, and answer these RQs in the
given order.

7.1 Experimental Setup

As all the three reflection analyses, Doopr , Elf and Solar, are implemented in Doop [8] (a state-of-
the-art pointer analysis framework for Java) and run with a pointer analysis, we compare them by
running each together with the same context-sensitive pointer analysis option provided by Doop:
selective-2-type-sensitive+heap [25].

Doopr denotes the reflection analysis proposed in [51] and all its provided reflection resolution op-
tions are turned on including -enable-reflection, -enable-reflection-substring-analysis,
-enable-reflection-use-based-analysis and -enable-reflection-invent-unknown-objects,
in the experiment. Elf (version 0.3) is the reflection analysis proposed in [32] with its default setting.

We use the LogicBloxDatalog engine (v3.9.0) on a Xeon E5-2650 2GHzmachinewith 64GB of RAM.
We consider 7 large DaCapo benchmarks (2006-10-MR2) and 4 real-world applications, avrora-
1.7.115 (a simulator), checkstyle-4.4 (a checker), freecs-1.3.20111225 (a server) and findbugs-1.2.1
(a bug detector), under a large reflection-rich Java library, JDK 1.6.0_45. The other 4 small DaCapo
benchmarks are excluded since reflection is much less used.

7.2 Assumptions

When analyzing the real code in the experiment, we accommodate Assumptions 1 – 4 as follows.
For Assumption 1, we rely on Doop’s pointer analysis to simulate the behaviors of Java native
methods. Dynamic class loading is assumed to be resolved separately [49]. To simulate its effect, we
create a closed world for a program, by locating the classes referenced with Doop’s fact generator
and adding additional ones found through program runs under TamiFlex [5]. For the DaCapo
benchmarks, their three standard inputs are used. For avrora and checkstyle, their default test
cases are used. For findbugs, one Java program is developed as its input since no default ones
are available. For freecs, a server requiring user interactions, we only initialize it as the input
in order to ensure repeatability. For a class in the closed-world of a program, Solar analyzes its
static initializer at the outset if it is dynamically loaded and proceeds as discussed in Section 5.8
otherwise.

Assumptions 2 and 3 are taken for granted.
As for Assumption 4, we validate it for all reflective allocation sites where oui is created in the

application code of the 10 programs that can be analyzed scalably. This assumption is found to
hold at 75% of these sites automatically by performing a simple intra-procedural analysis. We have
inspected the remaining 25% interprocedurally and found only two violating sites (in eclipse
and checkstyle), where oui is never used. In the other sites inspected, oui flows through only local
variables with all the call-chain lengths being at most 2. This shows that Assumption 4 generally
holds in practice.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

7:38 Yue Li, Tian Tan, and Jingling Xue

7.3 RQ1: Automation and Annotations

Figure 26 compares Solar and other reflection analyses [2, 28, 32, 38, 51, 68] denoted by “Others”
by the degree of automation achieved. For an analysis, this is measured by the number of annota-
tions required in order to achieve the soundness of the reflective calls identified to be potentially
unsoundly resolved.

33

30

37

26

47

28

28

36

43

30

0

0

3

0

2

0

2

0

0

0

0 10 20 30 40 50

freecs

findbugs

checkstyle

avrora

xalan

pmd

hsqldb

fop

eclipse

chart

SOLAR Others

Fig. 26. Number of annotations required for achieving the soundness of unsoundly resolved reflective calls.

Solar analyzes 7 out of the 11 programs scalably with full automation. For hsqldb, xalan
and checkstyle, Solar is unscalable (under 3 hours). With Probe, a total of 14 reflective calls
are flagged as being potentially unsoundly/imprecisely resolved in these three programs. After
7 annotations, 2 in hsqldb, 2 in xalan and 3 in checkstyle, Solar is scalable, as discussed in
Section 7.4. However, Solar is unscalable (under 3 hours) for jython, an interpreter (from DaCapo)
for Python in which the Java libraries and application code are invoked reflectively from the Python
code. Neither are Doopr and Elf.
“Others” cannot identify which reflective calls may be unsoundly resolved; however, they can

improve their soundness by adopting an annotation approach suggested in [38]. Generally, this
approach requires users to annotate the string arguments of calls to class-retrieving and member-
retrieving methods if they are not string constant. To reduce the annotation effort, e.g., for a
clz = Class.forName(cName) call with cName being an input string, this approach leverages the
intra-procedural post-dominating cast on the result of a clz.newInstance() call to infer the types
of clz.
To the best of our knowledge, the above approach [38] represents currently the best practice

with the least annotation burden to achieve a sound reflection analysis. Therefore, “Others” in
Figure 26 represents the number of annotation needed (for soundness) by the existing reflection
analyses that employs this approach.
As shown in Figure 26, “Others” will require a total of 338 annotations initially and possibly

more in the subsequent iterations (when more code is discovered). As discussed in Section 3.2.1,
Solar’s annotation approach is also iterative. However, for these programs, Solar requires a total
of 7 annotations in only one iteration.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

Understanding and Analyzing Java Reflection 7:39

Solar outperforms “Others” due to its powerful inference engine for performing reflection
resolution and its effective mechanism in accurately identifying unsoundly resolved reflective calls
as explained in Section 3.1.

7.4 RQ2: Automatically Identifying “Problematic” Reflective Calls

If Solar is scalable in analyzing a program with no unsoundly resolved calls reported, then Solar
is sound for this program under Assumptions 1 – 4 (Theorem 5.5). Thus, as discussed in Section 7.3,
Solar is sound (in this sense) for the seven Java programs scalably analyzed (under 3 hours) with
full automation in our experiment.
Solar is unscalable for hsqldb, xalan and checkstyle (under 3 hours). Probe is then run to

identify their “problematic” reflective calls, reporting 13 potentially unsoundly resolved calls: 1 in
hsqldb, 12 in xalan and 0 in checkstyle. By code inspection, we found that they are all indeed
unsound, demonstrating the effectiveness of Solar in accurately pinpointing a small number of
right parts of the program to improve unsoundness.
In addition, we currently adopt a simple approach to alerting users for potentially imprecisely

resolved reflective calls. Probe sorts all the newInstance() call sites according to the number of
objects lazily created at the cast operations operating on the result of a newInstance() call (by
[L-Cast]) in non-increasing order. In addition, Probe ranks the remaining reflective call sites (of
other reflective-action methods) according to the number of reflective targets resolved, also in
non-increasing order.

By focusing on unsoundly and imprecisely resolved reflective calls as opposed to the unknown
input strings (see Section 7.3), only lightweight annotations are needed as shown in Figure 26, with
2 hsqldb, 2 xalan and 3 in checkstyle as explained below.

Probing hsqldb. Earlier, Figure 14 shows the output automatically generated for hsqldb by
Probe (highlighting which reflective calls are resolved unsoundly or imprecisely), together with
the suggested annotation sites (as introduced in Section 4.5). In Figure 14, all the call sites to
(invoke) the same method are numbered from 0. The unsound list contains one invoke(), with its
relevant code appearing in class org.hsqldb.Function as shown. After Probe has finished, mtd
in line 352 points to a Method object muu that is initially created in line 179 and later flows into line
182, indicating that the class type of muu is unknown since cn in line 169 is unknown. By inspecting
the code, we find that cn can only be java.lang.Math or org.hsqldb.Library, read from some
hash maps or obtained by string manipulations and is annotated as:

org.hsqldb.Function.<init>/java.lang.Class.forName/0 java.lang.Math

org.hsqldb.Function.<init>/java.lang.Class.forName/0 org.hsqldb.Library

The annotation contains two parts: the reflective call site that needs to be annotated and the signa-
tures of its reflective targets. As the reflective targets in the above example have two different class
types, the signatures are just their class names, java.lang.Math and org.hsqldb.Library. The
prefix before the two names serves to indicate that the reflective call site java.lang.Class.forName
is the first forName call (indexed by number 0) in the constructor (denoted by <init>) of class
org.hsqldb.Function.
In Figure 14, the imprecise list for hsqldb is divided into two sections. In “newInstance (Type

Casting)”, there are 10 listed cast operations (T) reached by an oui object such that the number of
types inferred fromT is larger than 10. The top cast java.io.Serializable has 1391 subtypes and
is marked to be reached by a newInstance() call site in java.io.ObjectStreamClass. However,
this is a false positive for the harness used as the newInstance() call site is unreachable from the

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

7:40 Yue Li, Tian Tan, and Jingling Xue

harness during runtime, but it is reachable by the pointer analysis due to its imprecision. Thus,
we have annotated its corresponding Class.forName() call site in method resolveClass of class
java.io.ObjectInputStream (which is also unreachable from the harness used) to return nothing.
With the two annotations, Solar terminates in 45 minutes with its unsound list being empty.

Probing xalan. Probe reports 12 unsoundly resolved invoke() call sites. All Method objects flow-
ing into these call sites are from two getMethods() call sites in class extensions.MethodResolver.
By inspecting the code, we find that the string arguments for the two getMethods() calls and
their corresponding class-retrieving methods are all read from a file with its name hard-wired as
xmlspec.xsl. For this only input file provided by DaCapo, these two calls are never executed and
thus annotated to be disregarded. With these two annotations, Solar terminates in 28 minutes
with its unsound list being empty.

Probing checkstyle. Probe reports no unsoundly resolved call. To see why Solar is unscalable,
we examine one invoke() call in line 1773 of Figure 27 found automatically by Probe that stands
out as being imprecisely resolved.

921 PropertyDescriptor[] getPropertyDescriptors (Object bean) {
Class: org.apache.commons.beanutils.PropertyUtilsBean

return getPropertyDescriptors(bean.getClass());926

1275 Method[] getPublicDeclaredMethods (Class clz) {
Class: java.beans.Introspector

return clz.getMethods();1294

}

}

1764 Object invokeMethod (Method m, Object o, Object[] v) {
Class: org.apache.commons.beanutils.PropertyUtilsBean

return m.invoke(o, v);1773 }

To#be#annotated*call

Imprecisely*resolved*call

Fig. 27. Probing checkstyle.

There are 962 target methods inferred at this call site. Probe highlights its corresponding member-
retrieving method clz.getMethods() (in line 1294) and its class-retrieving methods (with one of
these being shown in line 926). Based on this, we find easily by code inspection that the target
methods called reflectively at the invoke() call are the setters whose names share the prefix
“set”. As a result, we annotate the clz.getMethods() call to return 158 “setX” methods in all the
subclasses of AutomaticBean.

In addition, the Method objects created at one getMethods() call and one getDeclaredMethods()
call in class *.beanutils.MappedPropertyDescriptor$1 flow into the invoke() call in line 1773
as false positives due to imprecision in the pointer analysis. These Method objects have been
annotated away.

After the three annotations, Solar is scalable, terminating in 38 minutes.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

Understanding and Analyzing Java Reflection 7:41

7.5 RQ3: Soundness, Precision and Efficiency

In this section, we first compare the soundness of Doopr , Elf and Solar and then compare their
analysis precision and efficiency to see if Solar’s precision and efficiency are still acceptable while
being significantly more sound than the prior work.

7.5.1 Soundness. To compare the soundness of Doopr , Elf and Solar, it is the most relevant to
compare their recall, measured by the number of true reflective targets discovered at reflective calls
to reflective-action methods that are dynamically executed under certain inputs. Unlike Doopr and
Elf, Solar can automatically identify “problematic” reflective calls for lightweight annotations.
To ensure a fair comparison, the three annotated programs shown in Figure 26 are used by all the
three reflection analyses.

Recall. Table 2 compares the recall of Doopr , Elf and Solar. Due to the lack of the ground truth
about the reflective targets in the benchmarks and applications considered, we use TamiFlex [5],
a practical dynamic reflection analysis tool to find the targets accessed at reflective calls in our
programs under the inputs described in Section 7.2. We then compare these three analyses in terms
of their recall rates with respect to these true reflective targets. Of the three analyses compared,
Solar is the only one to achieve total recall, for all reflective targets, including both methods and
fields, accessed.
For each DaCapo benchmark, its main code body is run under a reflection-based harness. As

a result, static analysis tools, including Doopr , Elf and Solar, use its xdeps version driven by
a reflection-free harness. However, TamiFlex needs to run each DaCapo benchmark with the
reflection-based harness dynamically. For each DaCapo benchmark, two harnesses lead to different
versions used for a few classes (e.g., org.apache.xerces.parsers.SAXParser) in eclipse, fop,
pmd and xalan. In Table 2, we thus ignore the totally 21 extra reflective targets accessed by TamiFlex.

Although Solar achieves total recall, it does not mean that Solar can replace dynamic reflection
analyses like TamiFlex [5]. To simulate the closed-world, as described in Section 7.2, in order to
verify the soundness of Solar under the assumptions made in Section 4.1, we ran TamiFlex to
find some additional dynamically loaded classes (which are missed by Doop’s fact generator) in
the closed-world. In other words, how to construct a sound closed-world is still a big challenge
for static analysis, and the current practice is to leverage dynamic analysis to help build it more
soundly. However, as shown in Table 2, once a closed-world is given, Solar can achieve total recall
(and better soundness than other static reflection analyses). So we have experimentally verified the
soundness of Solar (that is theoretically proven in Section 5.6) in terms of recall.
In practice, a reflection analysis must handle newInstance() and invoke() well in order to

build the call graph for a program. Let us see how resolving more (true) reflective targets in a
program by Solar can affect the call graph of the program.

Call Graph. Figure 28 compares Doopr , Elf and Solar in terms of true caller-callee relations
discovered. These numbers are statically calculated and obtained by an instrumental tool written
on top of Javassist [10]. According to Table 2, Solar recalls a total of 191% (148%) more targets
than Doopr (Elf) at the calls to newInstance() and invoke(), translating into 44787 (40583) more
true caller-callee relations found for the 10 programs under the inputs described in Section 7.2.
These numbers are expected to improve when more inputs are used.

Note that all method targets recalled by Doopr and Elf are recalled by Solar so that we can
use the “subtraction” (i.e., Solar −Doopr and Solar −Elf) in Figure 28. More true caller-callee
relations identified implies more soundness achieved. As shown in Figure 28, Solar is more sound
than the other two analyses in all programs and is significantly more sound than them in eclipse,
findbugs and checkstyle.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

7:42 Yue Li, Tian Tan, and Jingling Xue

Table 2. Recall comparison. For each program, TamiFlex denotes the number of targets found by TamiFlex
and Recall denotes the number of such (true) targets also discovered by each reflection analysis. There are

two types of newInstance(): c.newInstance (in Class) and ct.newInstance (in Constructor).

c.newInstance ct.newInstance invoke get/set

Doopr Elf Solar Doopr Elf Solar Doopr Elf Solar Doopr Elf Solar

chart
Recall 13 21 22 2 2 2 2 2 2 8 8 8
TamiFlex 22 2 2 8

eclipse
Recall 9 24 37 1 3 3 2 7 7 8 1039 1039
TamiFlex 37 3 7 1039

fop
Recall 9 12 13 0 0 0 1 1 1 8 8 8
TamiFlex 13 0 1 8

hsqldb
Recall 5 9 10 1 1 1 0 0 0 8 8 8
TamiFlex 10 1 0 8

pmd
Recall 4 8 13 0 0 0 0 0 7 8 8 8
TamiFlex 13 0 7 8

xalan
Recall 36 42 43 0 0 0 32 5 32 8 8 8
TamiFlex 43 0 32 8

avrora
Recall 50 46 53 0 0 0 0 0 0 0 0 0
TamiFlex 53 0 0 0

checkstyle
Recall 7 9 72 1 1 24 1 5 28 8 8 8
TamiFlex 72 24 28 8

findbugs
Recall 6 10 15 8 8 115 1 1 1 8 8 8
TamiFlex 15 115 1 8

freecs
Recall 6 10 12 2 2 2 1 1 55 8 8 8
TamiFlex 12 2 55 8

Total
Recall 141 191 290 15 17 147 40 22 133 72 1103 1103
TamiFlex 290 147 133 1103

As examples, let us examine eclipse and checkstyle. We start with eclipse. According to
Table 2, Solar finds 35 more target methods than Doopr , causing 25177 more true caller-callee
relations to be discovered. Due to LHM, Solar finds 13 more target methods at newInstance()
calls than Elf, resulting in 20400 additional true caller-callee relations to be introduced.

Let us consider now checkstyle. Due to collective inference, Solar has resolved 23 more target
methods at invoke() calls than Elf, resulting in 2437 more true caller-callee relations (i.e., over a
third of the total number of such relations, 6706) to be discovered.

7.5.2 Precision. Table 3 compares the analysis precision ofDoopr , Elf and Solarwith an important
client, devirtualization, which is only applicable to virtual calls with one single target each. This
client is critical in call graph construction and often used for measuring the precision of a pointer
analysis. The higher the percentage of devirtualization is, the more precise its corresponding
analysis is. Note that this statement is valid only if all the static analyses have the same degree of
soundness. In our case, however, Solar is more sound than the other two analyses (as demonstrated

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

Understanding and Analyzing Java Reflection 7:43

322

7542

6706

1267

833

2310

33

657

20400

513

349

7550

6592

840

588

2541

88

284

25177

778

0 5000 10000 15000 20000 25000

freecs
findbugs

checkstyle
avrora

xalan
pmd

hsqldb
fop

eclipse
chart

SOLAR - DOOP SOLAR - ELFr

Fig. 28. More true caller-callee relations discovered in recall by Solar than Doopr , denoted Solar − Doopr ,
and by Solar than Elf, denoted Solar − Elf.

Table 3. Precision comparison. For each program, the percentage of virtual calls that can be devirtualized is

given by each reflection analysis. Devirtualization is an important client for call graph construction.

chart eclipse fop hsqldb pmd xalan avrora checkstyle findbugs freecs Average

Doopr 93.40 94.69 90.73 95.34 92.53 92.63 91.98 93.09 92.41 95.27 93.20
Elf 93.53 88.07 92.34 94.80 92.87 92.70 94.50 93.19 92.53 94.94 92.93

Solar 93.51 87.69 92.26 94.51 92.39 92.65 92.43 93.39 92.37 95.26 92.63

in Section 7.5.1). Instead of comparing their exact precision, Table 3 serves to show that despite
achieving better recall (Table 2), which results in more true caller-callee relations to be discovered
(Figure 28), Solar still maintains a relatively good precision (similar precision as Doopr and Elf
for this client).

In Solar, its lazy heap modeling (LHM) relies on cast types (and their subtypes) to infer reflective
targets. Will this inference strategy introduce too much imprecision into the analysis when a cast
type has many subtypes? To address this concern, we conduct an experiment about the percentage
distribution for the number of types inferred at cast-related LHM points. As shown in Figure 29, the
number of inferred types in a program is 1 (⩽ 10) at 30.8% (85.4%) of its cast-related LHM points.
Some types (e.g., java.io.Serializable) are quite wide, giving rise to more than 50 inferred
types each, but rare, appearing at an average of about 1.9% cast-related LHM points in a program.

7.5.3 Efficiency. Table 4 compares the analysis times of Doopr , Elf and Solar. Despite producing
significantly better soundness than Doopr and Elf, Solar is only several-fold slower (with the
average calculated as a geometric mean). When analyzing hsqldb, xalan and checkstyle, Solar
requires some lightweight annotations (Section 7.3). Their analysis times are the ones consumed
by Solar on analyzing the annotated programs. Note that these annotated programs are also used
by Doop and Elf (to ensure a fair comparison).

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

7:44 Yue Li, Tian Tan, and Jingling Xue

0% 20% 40% 60% 80% 100%

average

freecs

findbugs

checkstyle

avrora

xalan

pmd

hsqldb

fop

eclipse

chart
>50 31-50 11-30 6-10 2-5 =1

70

707070

83

67

61

62

95

76

71

66

71

Fig. 29. Percentage distribution for the number of types inferred at cast-related LHM points. For each program,

the total number of the cast-related LHM points is shown in the middle of its own bar.

Table 4. Comparing Doopr , Elf, Solar and Solars in terms of analysis times (secs).

chart eclipse fop hsqldb pmd xalan avrora checkstyle findbugs freecs Average

Doopr 1864 340 2631 1173 602 1092 2934 531 2753 371 1074
Elf 3434 5496 2821 1765 1363 1432 932 1463 2281 1259 1930

Solar 4322 9710 4089 2471 2084 1634 3371 2160 7350 2589 3390

Solars 2005 542 1603 1863 1238 1117 790 1307 1868 909 1229

Table 5. Comparing Doopr , Elf, Solar and Solars in terms of the number of statically resolved call graph

edges.

chart eclipse fop hsqldb pmd xalan avrora checkstyle findbugs freecs Average

Doopr 109,020 51,161 107,805 68,849 63,479 56,275 106,741 66,872 74,151 51,322 72,509
Elf 126,791 166,395 97,443 75,389 79,216 72,855 76,589 82,747 91,121 74,469 90,888

Solar 127,912 187,343 102,497 77,233 91,522 73,989 118,573 91,194 122,820 92,377 104,654

Solars 106,830 49,971 64,442 70,195 63,290 51,203 61,250 66,384 74,747 52,181 64,473

Solar spends more time than the other two reflection analyses. For a benchmark, the extra
time is mainly spent on analyzing the extra code discovered by Solar’s more powerful inference
capability. According to Table 5, Solar discovers significantly more call graph edges than Doopr
and Elf, making it significantly more sound (as evaluated in Section 7.5.1).
To demonstrate that Solar has actually spent the extra time on analyzing the more code dis-

covered, we introduce Solars , a configuration of Solar with its inference capability turned off,
implying that Solars resolves a reflective call only if its string arguments are statically known. The
results for Solars are included in Tables 4 and 5. Without taking advantage of Solar’s inference
capability, Solars is faster than Solar (Table 4), but at the expense of resolving much fewer call
graph edges (Table 5).
In general, Doopr is more powerful than Solars since Doopr resolves more call graph edges

than Solars in most of the benchmarks considered. However, for some benchmarks, such as chart

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

Understanding and Analyzing Java Reflection 7:45

and xalan, where Doopr resolves more call graph edges, Doopr also turns out to be faster. This
is because Solars (just like Solar) is built on an older version of Doop than Doopr . In Doopr ,
the underlying pointer analysis is optimized for better performance, by e.g., merging some library
objects of the same type per method.

In summary, the experimental results described in Section 7.5 demonstrate that Solar’s soundness-
guided design is effective in balancing soundness, precision and scalability, in practice: Solar is
able to achieve significantly better soundness than the state-of-the-art while being still reasonably
precise and efficient.

8 RELATEDWORK

8.1 Static Reflection Analysis

Livshits et al. [38] introduce the first static reflection analysis for Java. By interleaving with a pointer
analysis, this reflection analysis discovers constant string values by performing regular string
inference and infers the types of reflectively created objects at clz.newInstance() calls, where clz
is unknown, by exploiting their intra-procedurally post-dominating cast operations, if any. Many
modern pointer analysis frameworks such as Doop [8], Wala [64] and Chord [43], adopt a similar
approach to analyze Java reflection, and many subsequent reflection analyses [32, 33, 51, 67, 68],
including Solar, are also inspired by the same work.
Elf [32] represents the first reflection analysis that takes advantage of the self-inferencing

property (Definition 2.4) to handle Java reflection. Elf can be considered as performing the collective
inference in Solar’s inference engine except that Elf’s inference rules are more strict (for better
analysis precision). In Elf, a reflective target will not be resolved unless both a red circle and a blue
circle in Figure 15 (i.e., a class name and part of a member signature) are available. As a result, Elf
is usually more precise and efficient, but (much) less sound than Solar.
In Doopr [51] (the one compared with Solar in Section 7), the authors propose to leverage

partial string information to resolve reflective targets. As explained in Section 2.3.3, many string
arguments are generated through complex string manipulations, causing their values to be hard
to resolve statically. However, in some cases, its substring analysis makes it possible to leverage
some partially available string values to help infer reflective targets. Combining this with some
sophisticated string analyses [11] is expected to generate more effective results. Recently, Grech
et al. [22] introduce an efficient reflection string analysis via graph coloring.

To improve soundness, Doopr attempts to infer the class types at Class.forName() (rather than
newInstance()) call sites by leveraging both (1) the intra- and inter-procedural cast operations
that are not necessarily post-dominating at their corresponding newInstance() call sites and
(2) the member names at their corresponding member-retrieving call sites (i.e., the blue circles
formed by Target Propagation in Figure 15). In some cases, these two strategies may make the
analysis imprecise. For example, the second strategy may suffer from a precision loss when different
unrelated classes contain identically-named members [32]. In addition, in both strategies (1) and
(2), the class types (at a Class.forName() call site), which are back-propagated (inferred) from
some member-retrieving call sites (cast sites), may further pollute the analysis precision at the
other member-retrieving and reflective-action calls. To reduce such imprecision, an approach called
inventing objects is proposed in Doopr . It creates objects at the newInstance() call sites (according
to the types at the related cast sites), rather than the corresponding Class.forName() call sites.
This method is similar to Case (II) in Solar’s lazy heap modeling (Figure 16).

Barros et al. [2] analyze Java reflection and intents in Android apps and its soundness is from
the perspective of a given client. Consider a client for detecting sensitive data leaks. Any invoke()
call that cannot be resolved soundly is assumed to return conservatively some sensitive data.

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

7:46 Yue Li, Tian Tan, and Jingling Xue

While being sound for the client, the reflection analysis itself is still unsound. In terms of reflection
resolution, Barros et al. [2] exploit only a subset of self-inferencing hints used in Solar. For instance,
regarding how the arguments in an invoke() call are leveraged in reflection resolution, Barros
et al. [2] use only their arity but ignore their types while Solar takes both into account. There are
precision implications. Consider the code fragment for Eclipse in Figure 10. If the types of the
elements of its one-dimensional array, parameters, are ignored, many spurious target methods in
line 175 would be inferred, as single-argument method is very common.
Despite recent advances on reflection analysis [32, 33, 51], a sophisticated reflection analysis

does not co-exist well with a sophisticated pointer analysis, since the latter is usually unscalable
for large programs [32, 33, 38, 51]. If a scalable but imprecise pointer analysis is used instead, the
reflection analysis may introduce many spurious call graph edges, making its underlying client
applications to be too imprecise to be practically useful. This problem can be alleviated by using a
recently proposed program slicing approach, called program tailoring [34].
Briefly, program tailoring accepts a sequential criterion (e.g., a sequence of reflective call sites:

forName()→getMethod()→invoke()) and generates a soundly tailored program that contains
the statements only relevant to the given sequential criterion. In other words, the tailored program
comprises the statements in all possible execution paths passing through the sequence(s) in the
given order. As a result, a more precise (but less scalable) pointer analysis may be scalable when
the tailored program (with smaller size) is analyzed, resulting a more precise result resolved at the
given reflective call site (e.g., the above invoke() call site). These reflective call sites can be the
problematic ones generated by Solar as demonstrated in [34].
DroidRa [28] analyzes reflection in Android apps by propagating string constants. This is

similar to the target propagation in Solar’s collective inference except that DroidRa uses the
solver Coal [45] to resolve the string values in a context- and flow-sensitive manner. Currently,
Solar’s target propagation is context-sensitive only, achieved by the pointer analysis used.
Ripple [67, 68] resolves reflection in Android apps by tackling their incomplete information

environments (e.g., undetermined intents or unmodeled services). Technically, even if some data
flows are missing (i.e, null), it is still able to resolve reflective targets by performing type inference,
which is similar to Solar’s collective inference except that some sophisticated inference rules are
not supported.

Unlike the prior work [2, 22, 28, 32, 35, 38, 51, 67], as highlighted in Figure 1, Solar is capable of
reasoning about its soundness and accurately identifying its unsoundness.

8.2 Dynamic Reflection Analysis

Hirzel et al. [24] propose an online pointer analysis for handling some dynamic features in Java at
run time. To tackle reflection, their analysis instruments a program so that constraints are generated
dynamically when the injected code is triggered at run time. Thus, the points-to information is
incrementally updated when new constraints are gradually introduced by reflection. This technique
for reflection handling can be used in JIT optimizations but may not be suitable for whole-program
static analysis.

Bodden et al. [5] leverage the runtime information gathered at reflective calls. Their tool, Tami-
Flex, records usage information of reflective calls in the program at run-time, interprets the logging
information, and finally, transforms these reflective calls into regular Java method calls to facilitate
static analysis. In addition, TamiFlex inserts runtime checks to warn the user in cases that the
program encounters reflective calls that diverge from the recorded information of previous runs.

Harvester [47] is designed to automatically extract runtime values from Android applications.
It uses a variation of traditional program slicing and dynamic execution to extract values from

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

Understanding and Analyzing Java Reflection 7:47

obfuscated malware samples that obfuscate method calls using reflection or hide sensitive values
in native code.

8.3 Others

Braux and Noyé [7] provide offline partial evaluation support for reflection in order to perform
aggressive compiler optimizations for Java programs. It transforms a program by compiling away
the reflection code into regular operations on objects according to their concrete types that are
constrained manually. The inference engine of Solar can be viewed as a tool for inferring such
constraints automatically.

To increase code coverage, some static analysis tools [8, 65] allow users to provide ad hoc manual
specifications about reflection usage in a program. However, due to the diversity and complexity
of applications, it is not yet clear how to do so in a systematic manner. For framework-based
web applications, Sridharan et al. [56] introduce a framework that exploits domain knowledge to
automatically generate a specification of framework-related behaviours (e.g., reflection usage) by
processing both application code and configuration files. Solarmay also utilize domain knowledge
to analyze some configuration files, but only for those reflective call sites that cannot be resolved
effectively.
Liu et al. [35] introduce a hybrid reflection analysis by combing static and dynamic analyses.

In static analysis, a reflection-oriented slicing approach is applied to extract a small number of
slices for a reflective call. Then in dynamic analysis, these slices are executed with automatically
generated test cases to find out the reflective targets. Although the approach is neither sound
nor complete, it can increase significantly the code coverage of dynamic reflection analysis while
keeping false reflective targets low in practice.
Li et al. [29] propose an object-oriented dynamic symbolic execution framework for testing

object-oriented libraries in Java. They support polymorphism by introducing constraints for method
invocation targets and field manipulations via symbolic types. They have also generalized the notion
of symbolic types to symbolic methods and symbolic fields to handle Java reflection symbolically.
Finally, the dynamic analyses [5, 24, 47] work in the presence of both dynamic class loading

and reflection. Nguyen and Xue [44, 66] introduce an inter-procedural side-effect analysis for
open-world Java programs by allowing dynamic class loading but disallowing reflection. Like other
static reflection analyses [2, 22, 28, 32, 38, 51, 67], Solar can presently analyze closed-world Java
programs only.

9 CONCLUSIONS

Reflection analysis is a long-standing hard open problem. In the past years, almost all the research
papers consider Java reflection as a separate assumption and most static analysis tools either handle
it partially or totally ignore it. In the program analysis community, people hold to the common
opinion that “reflection is a dynamic feature, so how could it be handled effectively in static analysis?”
This paper aims to change such informed opinion by showing that effective static analysis for
handling Java reflection is feasible. We present a comprehensive understanding of Java reflection
by illustrating its concept, interface design and real-world usage. Many useful findings are given to
guide the design of more effective reflection analysis approaches and tools.

We introduce Solar, a soundness-guided reflection analysis, which is able to achieve significantly
better soundness than previous work and can also accurately and automatically identify which
reflective calls are resolved unsoundly or imprecisely. Such capabilities are helpful, in practice, as
users can be aware of how sound an analysis is. In addition, for some clients where high-quality
analysis results are needed (e.g., bug detectors with good precision or verification tools with good
soundness) for a program, Solar provides an opportunity to help users obtain the analysis results

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

7:48 Yue Li, Tian Tan, and Jingling Xue

as desired, by guiding them to add some lightweight annotations, if needed, to the parts of the
program, where unsoundly or imprecisely resolved reflective calls are identified.

ACKNOWLEDGMENTS

The authors thank the reviewers for their constructive comments. This work was supported by the
Australia Research Council (ARC) Grant No. DP170103956, and European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program (Grant No. 647544).

REFERENCES

[1] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien
Octeau, and Patrick D. McDaniel. 2014. FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for Android apps. In ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 259–269.
https://doi.org/10.1145/2594291.2594299

[2] Paulo Barros, René Just, Suzanne Millstein, Paul Vines, Werner Dietl, Marcelo d’Amorim, and Michael D. Ernst.
2015. Static Analysis of Implicit Control Flow: Resolving Java Reflection and Android Intents (T). In 30th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015. 669–679.
https://doi.org/10.1109/ASE.2015.69

[3] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan, Kathryn S. McKinley, Rotem Bentzur, Amer
Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony L. Hosking, Maria Jump, Han Bok
Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and Ben
Wiedermann. 2006. The DaCapo benchmarks: Java benchmarking development and analysis. In Proceedings of
the 21th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2006, October 22-26, 2006, Portland, Oregon, USA, Peri L. Tarr and William R. Cook (Eds.). ACM, 169–190.
https://doi.org/10.1145/1167473.1167488

[4] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux,
and Xavier Rival. 2003. A static analyzer for large safety-critical software. In Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation 2003, San Diego, California, USA, June 9-11, 2003.
196–207. https://doi.org/10.1145/781131.781153

[5] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, andMiraMezini. 2011. Taming reflection: Aiding static analysis
in the presence of reflection and custom class loaders. In Proceedings of the 33rd International Conference on Software
Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011. 241–250. https://doi.org/10.1145/1985793.1985827

[6] Gilad Bracha and David M. Ungar. 2004. Mirrors: design principles for meta-level facilities of object-oriented pro-
gramming languages. In Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2004, October 24-28, 2004, Vancouver, BC, Canada. 331–344.
https://doi.org/10.1145/1028976.1029004

[7] Mathias Braux and Jacques Noyé. 2000. Towards Partially Evaluating Reflection in Java. In Proceedings of the 2000 ACM
SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation (PEPM ’00), Boston, Massachusetts,
USA, January 22-23, 2000. 2–11. https://doi.org/10.1145/328690.328693

[8] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specification of sophisticated points-to analyses.
In Proceedings of the 24th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA, Shail Arora and Gary T. Leavens (Eds.). ACM,
243–262. https://doi.org/10.1145/1640089.1640108

[9] Walter Cazzola. 2004. SmartReflection: Efficient Introspection in Java. Journal of Object Technology 3, 11 (2004),
117–132. https://doi.org/10.5381/jot.2004.3.11.a6

[10] Shigeru Chiba. 2000. Load-Time Structural Reflection in Java. In ECOOP 2000 - Object-Oriented Programming, 14th
European Conference, Sophia Antipolis and Cannes, France, June 12-16, 2000, Proceedings. 313–336. https://doi.org/10.
1007/3-540-45102-1_16

[11] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. 2003. Precise Analysis of String Expressions.
In Static Analysis, 10th International Symposium, SAS 2003, San Diego, CA, USA, June 11-13, 2003, Proceedings. 1–18.
https://doi.org/10.1007/3-540-44898-5_1

[12] Manuvir Das, Sorin Lerner, and Mark Seigle. 2002. ESP: Path-Sensitive Program Verification in Polynomial Time. In
Proceedings of the 2002 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), Berlin,
Germany, June 17-19, 2002. 57–68. https://doi.org/10.1145/512529.512538

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1109/ASE.2015.69
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/781131.781153
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/1028976.1029004
https://doi.org/10.1145/328690.328693
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.5381/jot.2004.3.11.a6
https://doi.org/10.1007/3-540-45102-1_16
https://doi.org/10.1007/3-540-45102-1_16
https://doi.org/10.1007/3-540-44898-5_1
https://doi.org/10.1145/512529.512538

Understanding and Analyzing Java Reflection 7:49

[13] Dylan Dawson, Ronald J. Desmarais, Holger M. Kienle, and Hausi A. Müller. 2008. Monitoring in adaptive systems
using reflection. In 2008 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2008,
Leipzig, Germany, May 12-13, 2008. 81–88. https://doi.org/10.1145/1370018.1370033

[14] Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of Object-Oriented Programs Using Static Class
Hierarchy Analysis. In ECOOP’95 - Object-Oriented Programming, 9th European Conference, Århus, Denmark, August
7-11, 1995, Proceedings. 77–101. https://doi.org/10.1007/3-540-49538-X_5

[15] FranÃğois-Nicola Demers and JacquesMalenfant. 1995. Reflection in logic, functional and object-oriented programming:
a Short Comparative Study (IJCAI). 29–38.

[16] Bill Donkervoet and Gul Agha. 2007. Reflecting on Adaptive Distributed Monitoring (Formal Methods for Components
and Objects).

[17] Dawson R. Engler, David Yu Chen, and Andy Chou. 2001. Bugs as Inconsistent Behavior: A General Approach to
Inferring Errors in Systems Code. In Proceedings of the 18th ACM Symposium on Operating System Principles, SOSP
2001, Chateau Lake Louise, Banff, Alberta, Canada, October 21-24, 2001. 57–72. https://doi.org/10.1145/502034.502041

[18] Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart Pernsteiner, Franziska Roesner, Karl Koscher,
Paulo Barros, Ravi Bhoraskar, Seungyeop Han, Paul Vines, and Edward XueJun Wu. 2014. Collaborative Verification of
Information Flow for a High-Assurance App Store. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, November 3-7, 2014. 1092–1104. https://doi.org/10.1145/2660267.2660343

[19] Ira R. Forman and Nate Forman. 2004. Java Reflection in Action. Manning Publications Co.
[20] George Fourtounis, George Kastrinis, and Yannis Smaragdakis. 2018. Static analysis of Java dynamic proxies. In

Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2018, Amsterdam,
The Netherlands, July 16-21, 2018. 209–220. https://doi.org/10.1145/3213846.3213864

[21] Paul V. Gestwicki and Bharat Jayaraman. 2002. Interactive Visualization of Java Programs. In 2002 IEEE CS International
Symposium on Human-Centric Computing Languages and Environments (HCC 2002), 3-6 September 2002, Arlington, VA,
USA. 226–235. https://doi.org/10.1109/HCC.2002.1046375

[22] Neville Grech, George Kastrinis, and Yannis Smaragdakis. 2018. Efficient Reflection String Analysis via Graph
Coloring. In 32nd European Conference on Object-Oriented Programming, ECOOP 2018, July 16-21, 2018, Amsterdam, The
Netherlands. 26:1–26:25. https://doi.org/10.4230/LIPIcs.ECOOP.2018.26

[23] Charlotte Herzeel, Pascal Costanza, and Theo D’Hondt. 2008. Self-Sustaining Systems. Chapter Reflection for the
Masses, 87–122.

[24] Martin Hirzel, Daniel von Dincklage, Amer Diwan, and Michael Hind. 2007. Fast online pointer analysis. ACM Trans.
Program. Lang. Syst. 29, 2 (2007), 11. https://doi.org/10.1145/1216374.1216379

[25] George Kastrinis and Yannis Smaragdakis. 2013. Hybrid context-sensitivity for points-to analysis. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, Hans-
Juergen Boehm and Cormac Flanagan (Eds.). ACM, 423–434. https://doi.org/10.1145/2462156.2462191

[26] Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. 2017. Challenges for Static Analysis of Java Reflection:
Literature Review and Empirical Study. In Proceedings of the 39th International Conference on Software Engineering
(ICSE ’17). IEEE Press, Piscataway, NJ, USA, 507–518. https://doi.org/10.1109/ICSE.2017.53

[27] Ondrej Lhoták and Laurie J. Hendren. 2003. Scaling Java Points-to Analysis Using SPARK. In Compiler Construction,
12th International Conference, CC 2003, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings (Lecture Notes in Computer Science), Görel Hedin (Ed.),
Vol. 2622. Springer, 153–169. https://doi.org/10.1007/3-540-36579-6_12

[28] Li Li, Tegawendé F. Bissyandé, Damien Octeau, and Jacques Klein. 2016. DroidRA: Taming Reflection to Support
Whole-program Analysis of Android Apps. In Proceedings of the 25th International Symposium on Software Testing and
Analysis (ISSTA 2016). ACM, New York, NY, USA, 318–329. https://doi.org/10.1145/2931037.2931044

[29] Lian Li, Yi Lu, and Jingling Xue. 2017. Dynamic symbolic execution for polymorphism. In Proceedings of the 26th
International Conference on Compiler Construction, Austin, TX, USA, February 5-6, 2017. 120–130. http://dl.acm.org/
citation.cfm?id=3033029

[30] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018. Precision-guided context sensitivity for pointer
analysis. PACMPL 2, OOPSLA (2018), 141:1–141:29. https://doi.org/10.1145/3276511

[31] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018. Scalability-first pointer analysis with self-tuning
context-sensitivity. In Proceedings of the 2018 ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November
04-09, 2018. 129–140. https://doi.org/10.1145/3236024.3236041

[32] Yue Li, Tian Tan, Yulei Sui, and Jingling Xue. 2014. Self-inferencing Reflection Resolution for Java. In ECOOP 2014
- Object-Oriented Programming - 28th European Conference, Uppsala, Sweden, July 28 - August 1, 2014. Proceedings
(Lecture Notes in Computer Science), Richard E. Jones (Ed.), Vol. 8586. Springer, 27–53. https://doi.org/10.1007/
978-3-662-44202-9_2

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

https://doi.org/10.1145/1370018.1370033
https://doi.org/10.1007/3-540-49538-X_5
https://doi.org/10.1145/502034.502041
https://doi.org/10.1145/2660267.2660343
https://doi.org/10.1145/3213846.3213864
https://doi.org/10.1109/HCC.2002.1046375
https://doi.org/10.4230/LIPIcs.ECOOP.2018.26
https://doi.org/10.1145/1216374.1216379
https://doi.org/10.1145/2462156.2462191
https://doi.org/10.1109/ICSE.2017.53
https://doi.org/10.1007/3-540-36579-6_12
https://doi.org/10.1145/2931037.2931044
http://dl.acm.org/citation.cfm?id=3033029
http://dl.acm.org/citation.cfm?id=3033029
https://doi.org/10.1145/3276511
https://doi.org/10.1145/3236024.3236041
https://doi.org/10.1007/978-3-662-44202-9_2
https://doi.org/10.1007/978-3-662-44202-9_2

7:50 Yue Li, Tian Tan, and Jingling Xue

[33] Yue Li, Tian Tan, and Jingling Xue. 2015. Effective Soundness-Guided Reflection Analysis. In Static Analysis -
22nd International Symposium, SAS 2015, Saint-Malo, France, September 9-11, 2015, Proceedings (Lecture Notes in
Computer Science), Sandrine Blazy and Thomas Jensen (Eds.), Vol. 9291. Springer, 162–180. https://doi.org/10.1007/
978-3-662-48288-9_10

[34] Yue Li, Tian Tan, Yifei Zhang, and Jingling Xue. 2016. Program Tailoring: Slicing by Sequential Criteria. In 30th
European Conference on Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy (LIPIcs), Shriram
Krishnamurthi and Benjamin S. Lerner (Eds.), Vol. 56. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 15:1–15:27.
https://doi.org/10.4230/LIPIcs.ECOOP.2016.15

[35] Jie Liu, Yue Li, Tian Tan, and Jingling Xue. 2017. Reflection Analysis for Java: Uncovering More Reflective Targets
Precisely. In 28th IEEE International Symposium on Software Reliability Engineering, ISSRE 2017, Toulouse, France, October
23-26, 2017. 12–23. https://doi.org/10.1109/ISSRE.2017.36

[36] Benjamin Livshits and Monica S. Lam. 2005. Finding Security Vulnerabilities in Java Applications with Static Analysis.
In Proceedings of the 14th USENIX Security Symposium, Baltimore, MD, USA, July 31 - August 5, 2005, Patrick D. McDaniel
(Ed.). USENIX Association.

[37] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhoták, José Nelson Amaral, Bor-Yuh Evan Chang,
Samuel Z. Guyer, Uday P. Khedker, Anders Møller, and Dimitrios Vardoulakis. 2015. In defense of soundiness: a
manifesto. Commun. ACM 58, 2 (2015), 44–46. https://doi.org/10.1145/2644805

[38] V. Benjamin Livshits, John Whaley, and Monica S. Lam. 2005. Reflection Analysis for Java. In Programming Languages
and Systems, Third Asian Symposium, APLAS 2005, Tsukuba, Japan, November 2-5, 2005, Proceedings. 139–160. https:
//doi.org/10.1007/11575467_11

[39] Pattie Maes. 1987. Concepts and Experiments in Computational Reflection. In Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA’87), Orlando, Florida, USA, October 4-8, 1987, Proceedings. 147–155.
https://doi.org/10.1145/38765.38821

[40] J. Malenfant, M. Jacques, and F. N. Demers. 1996. A tutorial on behavioral reflection and its implementation. In
Proceedings of the Reflection Conference. 1–20.

[41] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2002. Parameterized object sensitivity for points-to and
side-effect analyses for Java. In Proceedings of the International Symposium on Software Testing and Analysis, ISSTA
2002, Roma, Italy, July 22-24, 2002, Phyllis G. Frankl (Ed.). ACM, 1–11. https://doi.org/10.1145/566172.566174

[42] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parameterized object sensitivity for points-to analysis for
Java. ACM Trans. Softw. Eng. Methodol. 14, 1 (2005), 1–41. https://doi.org/10.1145/1044834.1044835

[43] Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective static race detection for Java. In Proceedings of the ACM
SIGPLAN 2006 Conference on Programming Language Design and Implementation, Ottawa, Ontario, Canada, June 11-14,
2006, Michael I. Schwartzbach and Thomas Ball (Eds.). ACM, 308–319. https://doi.org/10.1145/1133981.1134018

[44] Phung Hua Nguyen and Jingling Xue. 2005. Interprocedural Side-Effect Analysis and Optimisation in the Presence of
Dynamic Class Loading. In Computer Science 2005, Twenty-Eighth Australasian Computer Science Conference (ACSC2005),
Newcastle, NSW, Australia, January/February 2005. 9–18. http://crpit.com/confpapers/CRPITV38Nguyen.pdf

[45] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick D. McDaniel. 2015. Composite Constant
Propagation: Application to Android Inter-Component Communication Analysis. In 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1. 77–88. https://doi.org/10.
1109/ICSE.2015.30

[46] Awais Rashid and Ruzanna Chitchyan. 2003. Persistence as an aspect. In Proceedings of the 2nd International Conference
on Aspect-Oriented Software Development, AOSD 2003, Boston, Massachusetts, USA, March 17-21, 2003. 120–129. https:
//doi.org/10.1145/643603.643616

[47] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. 2016. Harvesting Runtime Values in Android
Applications That Feature Anti-Analysis Techniques. In 23rd Annual Network and Distributed System Security Sympo-
sium, NDSS 2016, San Diego, California, USA, February 21-24, 2016. http://wp.internetsociety.org/ndss/wp-content/
uploads/sites/25/2017/09/harvesting-runtime-values-android-applications-feature-anti-analysis-techniques.pdf

[48] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. 2013. DroidChameleon: evaluating Android anti-malware against
transformation attacks. In 8th ACM Symposium on Information, Computer and Communications Security, ASIA CCS ’13,
Hangzhou, China - May 08 - 10, 2013. 329–334. https://doi.org/10.1145/2484313.2484355

[49] Jason Sawin and Atanas Rountev. 2009. Improving static resolution of dynamic class loading in Java using dynamically
gathered environment information. Autom. Softw. Eng. 16, 2 (2009), 357–381. https://doi.org/10.1007/s10515-009-0049-9

[50] Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis. Foundations and Trends in Programming Languages
2, 1 (2015), 1–69. https://doi.org/10.1561/2500000014

[51] Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Bravenboer. 2015. More Sound Static Handling
of Java Reflection. In Programming Languages and Systems - 13th Asian Symposium, APLAS 2015, Pohang, South Korea,
November 30 - December 2, 2015, Proceedings (Lecture Notes in Computer Science), Xinyu Feng and Sungwoo Park (Eds.),

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

https://doi.org/10.1007/978-3-662-48288-9_10
https://doi.org/10.1007/978-3-662-48288-9_10
https://doi.org/10.4230/LIPIcs.ECOOP.2016.15
https://doi.org/10.1109/ISSRE.2017.36
https://doi.org/10.1145/2644805
https://doi.org/10.1007/11575467_11
https://doi.org/10.1007/11575467_11
https://doi.org/10.1145/38765.38821
https://doi.org/10.1145/566172.566174
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/1133981.1134018
http://crpit.com/confpapers/CRPITV38Nguyen.pdf
https://doi.org/10.1109/ICSE.2015.30
https://doi.org/10.1109/ICSE.2015.30
https://doi.org/10.1145/643603.643616
https://doi.org/10.1145/643603.643616
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/harvesting-runtime-values-android-applications-feature-anti-analysis-techniques.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/harvesting-runtime-values-android-applications-feature-anti-analysis-techniques.pdf
https://doi.org/10.1145/2484313.2484355
https://doi.org/10.1007/s10515-009-0049-9
https://doi.org/10.1561/2500000014

Understanding and Analyzing Java Reflection 7:51

Vol. 9458. Springer, 485–503. https://doi.org/10.1007/978-3-319-26529-2_26
[52] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick your contexts well: understanding object-

sensitivity. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2011, Austin, TX, USA, January 26-28, 2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 17–30. https://doi.org/10.
1145/1926385.1926390

[53] Brian Cantwell Smith. 1982. Procedural reflection in programming languages. Ph.D. Dissertation. Massachusetts Institute
of Technology, Cambridge, MA, USA. http://hdl.handle.net/1721.1/15961

[54] J.M. Sobel and Daniel P. Friedman. 1996. An Introduction to Reflection-Oriented Programming.
[55] Benoît Sonntag and Dominique Colnet. 2014. Efficient compilation strategy for object-oriented languages under the

closed-world assumption. Softw., Pract. Exper. 44, 5 (2014), 565–592. https://doi.org/10.1002/spe.2174
[56] Manu Sridharan, Shay Artzi, Marco Pistoia, Salvatore Guarnieri, Omer Tripp, and Ryan Berg. 2011. F4F: taint analysis

of framework-based web applications. In Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2011, part of SPLASH 2011, Portland, OR, USA, October 22 -
27, 2011. 1053–1068. https://doi.org/10.1145/2048066.2048145

[57] Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and Eran Yahav. 2013. Alias Analysis for Object-
Oriented Programs. In Aliasing in Object-Oriented Programming. Types, Analysis and Verification, Dave Clarke,
James Noble, and Tobias Wrigstad (Eds.). Lecture Notes in Computer Science, Vol. 7850. Springer, 196–232. https:
//doi.org/10.1007/978-3-642-36946-9_8

[58] Manu Sridharan, Stephen J. Fink, and Rastislav Bodík. 2007. Thin slicing. In Proceedings of the ACM SIGPLAN 2007
Conference on Programming Language Design and Implementation, San Diego, California, USA, June 10-13, 2007, Jeanne
Ferrante and Kathryn S. McKinley (Eds.). ACM, 112–122. https://doi.org/10.1145/1250734.1250748

[59] Yulei Sui, Yue Li, and Jingling Xue. 2013. Query-directed adaptive heap cloning for optimizing compilers. In Proceedings
of the 2013 IEEE/ACM International Symposium on Code Generation and Optimization, CGO 2013, Shenzhen, China,
February 23-27, 2013. 1:1–1:11. https://doi.org/10.1109/CGO.2013.6494978

[60] Tian Tan, Yue Li, and Jingling Xue. 2016. Making k-Object-Sensitive Pointer Analysis More Precise with Still k-Limiting.
In Static Analysis - 23rd International Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016, Proceedings (Lecture
Notes in Computer Science), Xavier Rival (Ed.), Vol. 9837. Springer, 489–510. https://doi.org/10.1007/978-3-662-53413-7_
24

[61] Tian Tan, Yue Li, and Jingling Xue. 2017. Efficient and precise points-to analysis: modeling the heap by merging
equivalent automata. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 278–291.
https://doi.org/10.1145/3062341.3062360

[62] Rei Thiessen and Ondřej Lhoták. 2017. Context Transformations for Pointer Analysis. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). ACM, New York, NY, USA,
263–277. https://doi.org/10.1145/3062341.3062359

[63] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, and Vijay Sundaresan. 1999. Soot - a
Java bytecode optimization framework. In Proceedings of the 1999 conference of the Centre for Advanced Studies on
Collaborative Research, November 8-11, 1999, Mississauga, Ontario, Canada, Stephen A. MacKay and J. Howard Johnson
(Eds.). IBM, 13. https://doi.org/10.1145/781995.782008

[64] WALA. [n. d.]. T.J. Watson Libraries for Analysis. http://wala.sf.net.
[65] John Whaley and Monica S. Lam. 2004. Cloning-based Context-sensitive Pointer Alias Analysis Using Binary Decision

Diagrams. In Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation
(PLDI ’04). ACM, New York, NY, USA, 131–144. https://doi.org/10.1145/996841.996859

[66] Jingling Xue and Phung Hua Nguyen. 2005. Completeness Analysis for Incomplete Object-Oriented Programs. In
Compiler Construction, 14th International Conference, CC 2005, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings. 271–286. https://doi.org/10.1007/
978-3-540-31985-6_21

[67] Yifei Zhang, Yue Li, Tian Tan, and Jingling Xue. 2018. Ripple: Reflection analysis for Android apps in incomplete
information environments. Softw., Pract. Exper. 48, 8 (2018), 1419–1437. https://doi.org/10.1002/spe.2577

[68] Yifei Zhang, Tian Tan, Yue Li, and Jingling Xue. 2017. Ripple: Reflection Analysis for Android Apps in Incomplete
Information Environments. In Proceedings of the Seventh ACM on Conference on Data and Application Security and
Privacy, CODASPY 2017, Scottsdale, AZ, USA, March 22-24, 2017. 281–288. https://doi.org/10.1145/3029806.3029814

[69] Yury Zhauniarovich, Maqsood Ahmad, Olga Gadyatskaya, Bruno Crispo, and Fabio Massacci. 2015. StaDynA: Address-
ing the Problem of Dynamic Code Updates in the Security Analysis of Android Applications. In Proceedings of the 5th
ACM Conference on Data and Application Security and Privacy, CODASPY 2015, San Antonio, TX, USA, March 2-4, 2015.
37–48. https://doi.org/10.1145/2699026.2699105

ACM Trans. Softw. Eng. Methodol., Vol. 28, No. 2, Article 7. Publication date: February 2019.

https://doi.org/10.1007/978-3-319-26529-2_26
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1926385.1926390
http://hdl.handle.net/1721.1/15961
https://doi.org/10.1002/spe.2174
https://doi.org/10.1145/2048066.2048145
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1145/1250734.1250748
https://doi.org/10.1109/CGO.2013.6494978
https://doi.org/10.1007/978-3-662-53413-7_24
https://doi.org/10.1007/978-3-662-53413-7_24
https://doi.org/10.1145/3062341.3062360
https://doi.org/10.1145/3062341.3062359
https://doi.org/10.1145/781995.782008
http://wala.sf.net
https://doi.org/10.1145/996841.996859
https://doi.org/10.1007/978-3-540-31985-6_21
https://doi.org/10.1007/978-3-540-31985-6_21
https://doi.org/10.1002/spe.2577
https://doi.org/10.1145/3029806.3029814
https://doi.org/10.1145/2699026.2699105

	Abstract
	1 Introduction
	1.1 Challenges
	1.2 Previous Approaches
	1.3 Contributions
	1.4 Organization

	2 Understanding Java Reflection
	2.1 Concept
	2.2 Interface
	2.3 Reflection Usage

	3 Overview of Solar
	3.1 Goals, Challenges and Insights
	3.2 The Solar Framework

	4 The Solar Methodology
	4.1 Assumptions
	4.2 Collective Inference
	4.3 Lazy Heap Modeling
	4.4 Unsound Call Identification
	4.5 Guided Lightweight Annotation

	5 Formalism
	5.1 The RefJava Language
	5.2 Road Map
	5.3 Notations
	5.4 The Inference Engine of Solar
	5.5 Soundness Criteria
	5.6 Soundness Proof
	5.7 Probe
	5.8 Static Class Members

	6 Implementation
	7 Evaluation
	7.1 Experimental Setup
	7.2 Assumptions
	7.3 RQ1: Automation and Annotations
	7.4 RQ2: Automatically Identifying ``Problematic'' Reflective Calls
	7.5 RQ3: Soundness, Precision and Efficiency

	8 Related Work
	8.1 Static Reflection Analysis
	8.2 Dynamic Reflection Analysis
	8.3 Others

	9 Conclusions
	Acknowledgments
	References

