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Abstract

Points-to analysis addresses a fundamental problem in program analysis: determin-

ing statically which objects a variable or reference can point to. As a fundamental

technique, many real-world clients such as bug detection, security analysis, pro-

gram understanding, compiler optimization and program verification, depend on

the results of points-to analysis.

A long-standing problem in points-to analysis is the balance between precision

and efficiency. This thesis aims to improve both ends of the balance respectively.

• For precision, object-sensitivity is usually considered as the most precise

context-sensitivity for points-to analysis for object-oriented languages, such

as Java. However, it suffers from the scalability problem when increasing

the context length and thus it is hard to further improve its precision. We

present Bean, a new object-sensitivity approach for points-to analysis. By

identifying and eliminating the redundant context elements which contribute

nothing to the precision, Bean is able to improve the precision of any k-

object-sensitive analysis by still using a k-limiting context abstraction.

• For efficiency, targeting the type-dependent clients such as call graph con-

struction, devirtualization and may-fail casting, we present Mahjong, a

new heap abstraction approach for points-to analysis. By merging equiv-

alent automata representing type-consistent objects that are created by the
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allocation-site abstraction, Mahjong enables an allocation-site-based points-

to analysis to run significantly faster while achieving nearly the same precision

for type-dependent clients.

We extensively evaluate Bean and Mahjong against the state-of-the-art points-

to analysis for Java with large real-world Java applications and library. The results

demonstrate that both Bean and Mahjong have met their goals of design. Bean

has succeeded in making points-to analysis more precise at only small increases in

analysis cost. Mahjong enables points-to analysis to run significantly faster while

achieving nearly the same precision for type-dependent clients. We have released

Bean and Mahjong as open-source tools.
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Chapter 1

Introduction

Points-to analysis is a static analysis technique that addresses a fundamental prob-

lem in program analysis: at compile-time, it determines which memory locations

a pointer can point to at runtime. For object-oriented languages, such as Java,

points-to analysis focuses on heap locations, i.e., it statically determines which

heap objects a variable or reference can point to dynamically.

The results of points-to analysis are required by a wide range of client ap-

plications, including bug detection [57, 56, 11, 90, 91, 103, 9], security analy-

sis [47, 6, 31, 27], program understanding [26, 29, 62, 79], compiler optimiza-

tion [66, 19, 18, 88] and program verification [79, 12], as well as other program

analyses, such as program slicing [44, 81, 43], call graph construction [54, 38, 3],

reflection analysis [41, 42, 74, 107] and escape analysis [15, 100, 97, 68]. Hence

effective points-to analyses are highly demanded as they can benefit many client

applications and other fundamental analysis techniques.

Two metrics are usually considered to measure the effectiveness of points-to

analysis: precision and efficiency. In terms of a client, a more precise points-to

analysis enables less false bugs to be reported or more program properties to be

1



Chapter 1. Introduction 2

proved safely. A more efficient points-to analysis enables more time-critical clients

(e.g., compiler optimizations) to be applied or less turnaround time to wait.

In this thesis, we aim to improve the precision and efficiency of points-to analysis

respectively, in a significant way. However, this is not trivial as discussed below.

1.1 Challenges

Although many techniques for improving the precision and efficiency of points-to

analysis have been proposed in the last decades [5, 53, 7, 82, 101, 75, 92, 69, 34,

48, 83, 84, 49, 93, 21, 4, 78, 87, 89, 85], how to make a good balance between

precision and efficiency remains a long-standing problem: the techniques which

achieve higher precision usually sacrifice efficiency, and vice versa, which limits the

effectiveness of points-to analysis.

To make a good precision and efficiency trade-off, existing points-to analy-

ses mainly focus on two dimensions: modeling the control-flow and modeling the

heap. For object-oriented programs, context-sensitivity is known to model control-

flow with tractable and useful precision [7, 39, 72, 75, 82, 79]. Compared to the

storeless heap abstraction (e.g., access paths), store-based heap abstraction (e.g.,

allocation-site-based and allocation-type-based heap modeling) is the one predomi-

nately adopted by points-to analysis [32, 72, 80, 45, 94]. However, both techniques

suffer from the balance problem, especially for large object-oriented programs.

Context-sensitive points-to analysis separately analyzes the methods under dif-

ferent calling contexts to improve precision by preventing the merging of the points-

to information in different contexts. To address the problem of infinite calling con-

texts due to the recursive calls and also to further improve the analysis scalability

in practice, traditional approaches usually limit the length of contexts by a given
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parameter, k [71, 53, 55, 75]. As a result, if the length of the contexts is no larger

than k, the contexts can be distinguished; otherwise, the contexts ending with the

same k suffixes cannot be further distinguished and the points-to information un-

der these contexts would be merged. Given a larger k-limiting, the analysis can

partition the context space with finer grain and achieve better precision, but it may

also cause the analysis to dramatically slow down or even become unscalable.

Heap abstraction [32], which partitions the infinitely-sized heap into a finite

number of (abstract) objects, is particularly important to the analysis for object-

oriented languages such as Java. Generally, heap abstractions for points-to anal-

ysis for Java may use one abstract object per class (allocation-type heap abstrac-

tion) [99], or one abstract object per allocation site (allocation-site heap abstrac-

tion) [38], which can be further separated context-sensitively in an orthogonal man-

ner [53, 75, 34]. Points-to analyses with different heap abstractions may exhibit

significant differences in precision and efficiency [99, 75, 32]. Allocation-site heap

abstraction, as a finer abstraction, makes points-to analysis usually notably more

precise than the ones using allocation-type heap abstraction. However, allocation-

site-based points-to analysis usually runs significantly slower and its performance

will dramatically become worse if context-sensitivity is applied to further distin-

guish different heap objects for better precision.

1.2 Contributions

In this thesis, we present a new context-sensitivity approach called Bean [95] and

a new heap abstraction approach called Mahjong [96], to improve the precision

and efficiency of points-to analysis respectively. Specifically, this thesis makes the

following contributions.



Chapter 1. Introduction 4

• We introduce Bean to improve the precision of points-to analysis with small

overhead increases.

– Bean is a new object-sensitivity approach for points-to analysis. Object-

sensitivity [53, 55, 75] is usually considered as the most precise context-

sensitivity for points-to analysis for Java [34]. Bean further improves

its precision by automatically identifying and eliminating the redundant

context elements in distinguishing contexts. Unlike traditional object-

sensitivity, which obtains better precision by increasing the limit of con-

text length k with usually significantly worse efficiency, Bean is able

to achieve better precision with still the same k-limiting at only small

increases in analysis cost.

– We thoroughly evaluate the effectiveness of Bean by comparing it with

traditional object-sensitivity [53, 75] and the state-of-art hybrid context-

sensitivity [34] for points-to analysis. Our evaluation shows that Bean

can always achieve better precision with small increases in analysis cost

for real-world Java programs in practice.

• We introduce Mahjong to significantly improve the efficiency of points-

to analysis while maintaining nearly the same precision for type-dependent

clients such as call graph construction.

– Mahjong is a new heap abstraction that models the heap by iden-

tifying and merging type-consistent objects, which are distinguished

by the mainstream allocation-site-based points-to analysis. However,

the allocation-site-based heap abstraction often over-partitions the heap

without improving the precision much for an important class of type-

dependent clients such as call graph construction, devirtualization and
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may-fail casting. By merging type-consistent objects, Mahjong im-

proves the efficiency of points-to analysis with nearly the same precision

for type-dependent clients.

– We extensively evaluate the effectiveness of Mahjong by applying it

on three kinds of mainstream context-sensitivity for points-to analysis,

i.e., call-site-sensitivity [71, 99, 34], object-sensitivity [53, 55] and type-

sensitivity [75]. The evaluation demonstrates that Mahjong meets its

goal of design and is versatile to improve all these three kinds of context-

sensitive points-to analysis for the type-dependent clients.

• We implement both Bean and Mahjong as standalone tools which are de-

signed to work well with various points-to analysis frameworks for Java. We

have released Bean as an open-source tool at

http://www.cse.unsw.edu.au/~corg/bean

and we also have released Mahjong as an open-source tool at

http://www.cse.unsw.edu.au/~corg/mahjong.

1.3 Organization

The remainder of this thesis is organized as follows.

In Chapter 2, we introduce context-sensitive points-to analysis for object-oriented

languages. We first give a generic formalism for context-sensitive points-to anal-

ysis. Based on this basic formalism, we then explain and formally present three

kinds of mainstream context-sensitivity for object-oriented languages, i.e., call-site-

sensitivity [71, 99, 34], object-sensitivity [53, 55] and type-sensitivity [75].

http://www.cse.unsw.edu.au/~corg/bean
http://www.cse.unsw.edu.au/~corg/mahjong
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In Chapters 3 and 4, we introduce Bean and Mahjong respectively. These two

chapters share the same structures, i.e., they both present the techniques following

the order of overview, motivation, methodology, formalism, implementation and

evaluation. At the end of both chapters, we discuss their related work.

In Chapter 5, we give the conclusion and suggest some further work.



Chapter 2

Background: Context-Sensitive

Points-to Analysis

In this chapter, we provide the background information about context-sensitive

points-to analysis that will be necessary to understand the remainder of this thesis.

In Section 2.1, we present the preliminary knowledge about context-sensitive points-

to analysis. In Section 2.2, we give a standard formulation of context-sensitive

points-to analysis and three kinds of mainstream context-sensitivity that are used

in the following chapters.

2.1 Preliminary

This section gives introductory information about points-to analysis for Java and

context-sensitivity.

Points-to Analysis Points-to analysis is a fundamental static analysis that com-

putes the over-approximation of the heap locations that each program pointer may

point to during executions. For object-oriented languages such as Java, a pointer

7
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can be a local variable or an instance field, and heap locations usually correspond

to heap objects. The results of points-to analysis for each pointer are a set of heap

objects that are pointed to by the pointer, called points-to set.

In Java programs, the heap objects can be created infinitely during execution

in the presence of loop and recursion. For decidability and scalability, a points-to

analysis must use a heap abstraction which partitions the infinitely-sized heap into

a finite number of abstract objects. In points-to analysis for Java, allocation-site

abstraction, which uses an allocation site to represent all the heap objects created

at the site, is the most commonly used heap abstraction [38, 53, 55, 75, 34]. We

will see later that the heap can be further partitioned context-sensitively in an

orthogonal manner (Section 2.2) or abstracted with other granularities to improve

the effectiveness of points-to analysis (Chapter 4).

Core Statements in Points-to Analysis Table 2.1 lists the five kinds of core

statements that points-to analysis for Java needs to deal with, including object

allocation (New), variable assignment (Assign), instance field read (Load), instance

field write (Store) and virtual method invocation (Call). In this thesis, we only

discuss these statements for brevity as in [38, 53, 55, 75, 76]. Other kinds of

statements (e.g., static field accesses and static method invocations) are handled

Statement Kind

x = new T() New

x = y Assign

x = y.f Load

x.f = y Store

x = y.g(arg1, ..., argn) Call

Table 2.1: Five kinds of core statements in points-to analysis.
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in a similar fashion.

Context-Sensitivity for Points-to Analysis Context-sensitivity is shown to

be useful for improving the precision of points-to analysis for Java programs in

practice [99, 39, 79, 75, 41, 42, 72, 43]. A traditional context-sensitive points-to

analysis analyzes the same methods and heap objects that under different call-

ing contexts separately. By this way, the analysis aims to avoid the precision loss

caused by the conflation of the behaviors across different interprocedural dynamic

execution paths. In theory, the calling context can be generalized as certain ab-

straction of the program states regarding to the control flow at the call site. As

a result, different variants of context-sensitivity are available and they are usually

distinguished by the different context elements used.

For object-oriented languages such as Java, three kinds of context-sensitivity

are commonly used, i.e., call-site-sensitivity [71, 99, 34], object-sensitivity [53, 55]

as well as type-sensitivity [75], and their contexts consist of sequences of call sites,

abstract heap objects (allocation sites) and types, respectively. They will be ex-

plained and formalized in Section 2.2 and used in Chapters 3 and 4.

In a program, the calling contexts of its methods and heap objects can be

infinite in the presence of recursive calls. Even without recursion, the space of

calling contexts can be tremendous in the programs with numerous execution paths.

To ensure termination and improve scalability, context-sensitive points-to analyses

usually limit the length of contexts by a given parameter k and thus restrict the

space of contexts during the analysis. As a result, a context-sensitive points-to

analysis can be parameterized and tuned by k.

When analyzing Java programs, there are two types of context, a method context

for local variables in methods and a heap context for heap objects. The relationship

between context parameter k and the two types of context must be clarified. In the
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rest of this thesis, we adopt the convention of points-to analysis as in [75], i.e., a

k-context-sensitive points-to analysis refers to the analysis whose method contexts

consist of k context elements and its heap contexts consist of k−1 context elements.

For example, in 2-call-site-sensitive points-to analysis, each method context consists

of 2 call sites and each heap context consists of 1 call site.

2.2 Formalism

This section gives a standard formulation of context-sensitive points-to analysis for

Java. We present the notations used in Section 2.2.1. In Section 2.2.2, we introduce

a generic formulation of context-sensitive points-to analysis. Finally, we formalize

three specific kinds of context-sensitivity in Section 2.2.3.

2.2.1 Notations

In Figure 2.1, the notations include three parts. The top part lists the basic domains

of context-sensitive points-to analysis. The middle part gives two domains about

context. As mentioned in Section 2.1, there are two types of context, i.e., method

context (C) and heap context (HC) for decorating local variables and heap objects

respectively. These two domains are both the composition of the basic domains in

the top part, and they vary with the different kinds of context-sensitivity used.

The last part gives the five key relations in context-sensitive points-to analysis.

pt and fpt store the analysis results: pt(c, x) represents the points-to set of variable

x under context c and fpt(hc, oi, f) represents the points-to set of field access oi.f

where oi’s heap context is specified by hc.

mtdCtxSelector and heapCtxSelector are the core of context-sensitivity. They

choose the method contexts for the local variables in the methods and heap contexts
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class type t ∈ T
variable x, y ∈ V

heap object oi, oj ∈ H
field f ∈ F

method m ∈M
method invocation l ∈ I

method context c ∈ C
heap context hc ∈ HC

pt : C× V→ P(HC×H)
fpt : HC×H× F→ P(HC×H)

mtdCtxSelector : C× I×HC×H→ C
heapCtxSelector : C×H→ HC

contextsOf : M→ P(C)

Figure 2.1: Notations.

for object allocations. Specifically, mtdCtxSelector uses the information available

at a call site, i.e., the method context for the method containing the call site (C),

the label of the call site (I), the receiver object of the call site (H) and the heap

context for the receiver object (HC), to select a new method context for the local

variables in the callee of the call site.

Which input elements are used to select a context by the selector depends on the

specific context-sensitivity used. For example, the selector of call-site-sensitivity

only uses the first two input elements, i.e., a method context (C) and a label of

the call site (I), to select a new context. But the selector of object-sensitivity only

considers the last input elements to select contexts.

heapCtxSelector uses the information available at an allocation site of a heap

object (i.e., the method context for the method containing the allocation site (C)

and the heap object (H) allocated at the site) to select a new heap context for the

heap object.

Finally, contextsOf maps a method to its method contexts.
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2.2.2 Context-Sensitive Points-to Analysis

Figure 2.2 gives a generic formulation of context-sensitive points-to analysis that is

parameterized by the two context selectors, mtdCtxSelector and heapCtxSelector.

If the two selectors are defined to always return a constant value, then the analysis

will be reduced to a context-insensitive points-to analysis. We will see three sets of

instances of mtdCtxSelector and heapCtxSelector in Section 2.2.3 that correspond

to three kinds of context-sensitivity. Now let us go through the rules in Figure 2.2.

m: the containing method for each statement being analysed

i: x = new T() c ∈ contextsOf(m) hc = heapCtxSelector(c, oi)

〈hc, oi〉 ∈ pt(c, x)
[New]

x = y c ∈ contextsOf(m)

pt(c, y) ⊆ pt(c, x)
[Assign]

x = y.f c ∈ contextsOf(m) 〈hc, oi〉 ∈ pt(c, y)

fpt(hc, oi, f) ⊆ pt(c, x)
[Load]

x.f = y c ∈ contextsOf(m) 〈hc, oi〉 ∈ pt(c, x)

pt(c, y) ⊆ fpt(hc, oi, f)
[Store]

l: x = y.g(arg1,...,argn) c ∈ contextsOf(m) 〈hc, oi〉 ∈ pt(c, y)
m′ = dispatch(oi, g) c′ = mtdCtxSelector(c, l, hc, oi)

c′ ∈ contextsOf(m′) 〈hc, oi〉 ∈ pt(c′,m′this)
∀ 1 ≤ k ≤ n : pt(c, argk) ⊆ pt(c′,m′pk) pt(c′,m′ret) ⊆ pt(c, x)

[Call]

Figure 2.2: Context-sensitive points-to analysis.

In [New], object creation is handled. This rule identifies uniquely the abstract

object oi created as an instance of T at allocation site i, with heap context hc

selected by heapCtxSelector and puts oi (with hc) into the points-to set of the

variable x under context c. Here, heapCtxSelector uses the context of the method

m which contains the allocation site i and i itself to compound a heap context hc

for oi. Then the abstract object oi will be analyzed under hc and distinguished
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from the other oi that are allocated at i but with different heap contexts.

[Assign] deals with local assignment. It makes the points-to set of variable y as

the subset of the points-to set of variable x under context c.

In [Load] and [Store], field read and write are handled respectively. Note that

we analyze an array object with its elements collapsed to one pseudo-field, denoted

arr as in [80, 42]. Hence, x = y[i] (x[i] = y) is handled as x = y.arr (x.arr

= y) by [Load] ([Store]).

[Call] handles method invocation. It uses function dispatch(oi, g) to resolve the

virtual dispatch of method g on the receiver object oi to bem′. Here, mtdCtxSelector

is used to leverage the information available at call site l, i.e., the context c of the

method m that contains l, the call site l itself, the receiver object oi and its heap

context hc, to work out a context c′ for the callee m′, then m′ will be analyzed

under context c′.

[Call] also deals with the context-sensitive interprocedural assignment between

call site l and callee m′. We assume that m′ has a formal parameter m′this for

the receiver object and m′p1, ...,m
′
pn for the remaining parameters, and a pseudo-

variable m′ret is used to hold the return value of m′. [Call] assigns the abstract

objects pointed by arguments y and arg1, ..., argn at call site l (under context c)

to the parameters of callee m′, i.e., m′this and m′p1, ...,m
′
pn (under context c′). In

addition, [Call] makes the points-to set of m′ret (under context c′) as the subset of

the points-to set of return variable x (under context c).

2.2.3 Context-Sensitivity

In this section, we present three mainstream variants of context-sensitivity and

express them as the instances of mtdCtxSelector and heapCtxSelector.

In each context-sensitivity, heapCtxSelector simply selects the context of the
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method containing the allocation site as the heap context for the abstract object

created at that site (we write “ ” to denote an unused arguments):

heapCtxSelector(c, ) = c

It implies that the domains of method context (C) and heap context (HC) are the

same. For brevity, we omit heapCtxSelector in the rest of this section and focus on

mtdCtxSelector.

2.2.3.1 Call-Site-Sensitivity

For a method, call-site-sensitivity [71, 99, 34], also referred to as k-CFA [71, 52]

or call-string-sensitivity [70, 60, 80], distinguishes its contexts by sequences of call

sites on the call stacks of method invocations that lead to the method. In this case,

the domain of method context C consists of sequences of call sites:

C = I0 ∪ I1 ∪ I2...

When dealing with a method call, call-site-sensitivity concatenates the context

c of the method containing the current call site and the call site l itself as the

method context for the callee method (++ is a concatenation operator):

mtdCtxSelector(c, l, , ) = c++ l

2.2.3.2 Object-Sensitivity

In contrast to call-site-sensitivity, object-sensitivity distinguishes method contexts

by the receiver objects at each call site [53, 55, 75]. The intuition behind object-

sensitivity is that in object-oriented languages such as Java, one critical role of

instance methods is to manipulate the receiver objects on which they are invoked.

Therefore object-sensitivity aims to separately analyze the operations performed

on different (receiver) objects to improve the analysis precision.
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In object-sensitivity, the context elements are (abstract) heap objects:

C = H0 ∪H1 ∪H2...

The mtdCtxSelector for object-sensitivity is defined as above. At a call site, it

selects the receiver object oi together with its heap context hc as the context of the

callee method:

mtdCtxSelector( , , hc, oi) = hc++ oi

In this way, the method contexts of a method totally depend on its receiver objects

(with their heap contexts), and the methods invoked on different objects will be

analyzed under different contexts.

2.2.3.3 Type-Sensitivity

Type-sensitivity [75] is a kind of practical context-sensitivity as it achieves a large

part of the precision of object-sensitivity while being more efficient. Technically,

it is an approximation of object-sensitivity. Object-sensitivity uses the receiver

objects at a call site as the contexts for the callee method. Instead, type-sensitivity

replaces the receiver objects in the contexts by the class types which enclose the

allocation sites of the receiver objects. Therefore, type-sensitivity approximates

object-sensitivity by merging the objects allocated in the same types as contexts.

Thus the domain of context in type-sensitivity is composed by sequences of class

types:

C = T0 ∪ T1 ∪ T2...

To formalize type-sensitivity, we define a function enclosingType : H→ T which

maps a heap object to a class type enclosing the allocation site of the object. Now

we can instantiate mtdCtxSelector for type-sensitivity:
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mtdCtxSelector( , , hc, oi) = hc++ enclosingType(oi)

As explained in the beginning of Section 2.2.3, heapCtxSelector selects the con-

text of the method which contains the allocation site oi as oi’s heap context hc. So

in mtdCtxSelector, the heap context hc of oi also consists of a sequence of types.



Chapter 3

Bean: Precise Points-to Analysis

via Object Allocation Graph

3.1 Overview

Two major dimensions for improving precision of points-to analysis are flow-

sensitivity and context-sensitivity. For C/C++ programs, flow-sensitivity is needed

by many clients [28, 37, 105, 104, 86]. For object-oriented programs, e.g., Java

programs, however, context-sensitivity is known to deliver tractable and useful

precision [39, 41, 42, 43, 72, 75, 79], in general.

We have introduced several kinds of commonly-used context-sensitivity in Chap-

ter 2. Among all the context abstractions proposed, object-sensitivity is generally

the most precise one in practice and is regarded as arguably the best for points-

to analysis in object-oriented languages [39, 75, 34]. This can be seen from its

widespread adoption in a number of points-to analysis frameworks for Java, such

as Doop [22, 14], Chord [16] and Wala [98]. In addition, object-sensitivity has

also been embraced by many other program analysis tasks, including typestate

17
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verification [25, 106], data race detection [57], information flow analysis [6, 27, 50],

and program slicing [43].

Despite its success, a k-object-sensitive points-to analysis, denoted k-obj , which

uses a sequence of k allocation sites (as k context elements) to represent a calling

context of a method call, may end up using some context elements redundantly

in the sense that these redundant context elements fail to induce a finer partition

of the space of (concrete) calling contexts for the method call. As a result, many

opportunities for making further precision improvements are missed.

In this chapter, we introduce Bean, a general approach for improving the preci-

sion of a k-object-sensitive points-to analysis, denoted k-obj , for Java, by avoiding

redundant context elements in k-obj while still maintaining a k-limiting context

abstraction. Bean can also be considered as a new context-sensitivity approach,

which breaks the informed opinion about the consecutive context elements as inher-

ited in the traditional k-CFA-based context-sensitivity. The novelty of Bean lies

in identifying redundant context elements by solving a graph problem on an Object

Allocation Graph (OAG), which is built based on a pre-analysis (e.g., a context-

insensitive Andersen’s analysis) performed initially on a program, and then avoid

them in the subsequent k-object-sensitive analysis. By construction, Bean is gen-

erally more precise than k-obj , with a precision that is guaranteed to be as good

as k-obj in the worst case.

We have implemented Bean and applied it to refine two state-of-the-art (whole-

program) points-to analyses, 2-obj and S-2-obj [34], provided in Doop [22], result-

ing in two Bean-directed points-to analyses, B-2-obj and B-S-2-obj , respectively.

We have considered may-alias and may-fail-cast, two representative clients used

elsewhere [23, 75, 79] for measuring the precision of a points-to analysis on a set of

nine large Java programs from the DaCapo benchmark suite [8]. Our results show
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that B-2-obj (B-S-2-obj ) is more precise than 2-obj (S-2-obj ) for every evaluated

benchmark under each client, at some small increases in analysis cost.

This chapter presents and validates a new idea on improving the precision of

object-sensitive points-to analysis by exploiting an object allocation graph. Con-

sidering the broad applications of object-sensitivity in analyzing Java programs,

we expect more clients to benefit from Bean, in practice. Specifically, this chapter

makes the following contributions:

• We introduce a new approach, Bean, for improving the precision of any k-

object-sensitive points-to analysis, k-obj , for Java, by avoiding its redundant

context elements while maintaining still a k-limiting context abstraction.

• We introduce a new kind of graph, called an OAG (object allocation graph),

constructed from a pre-analysis for the program, as a general mechanism to

identify redundant context elements used in k-obj .

• We have implemented Bean as a open-source tool and make it public avail-

able at http://www.cse.unsw.edu.au/~corg/bean. Bean is expected to

work well with various points-to analysis frameworks for Java. Currently, we

have integrated Bean with Doop.

• We have applied Bean to refine two state-of-the-art object-sensitive points-

to analyses for Java. Bean improves their precision for two representative

clients on a set of nine Java programs in DaCapo at small time increases.

The rest of this chapter is organized as follows. We first describe the motivation

of Bean in Section 3.2. Then, in Section 3.3, we present the methodology of Bean.

In Section 3.4, we formalize Bean, and give several key properties of Bean. The

implementation of Bean is introduced in Section 3.5. In Section 3.6, we evaluate

http://www.cse.unsw.edu.au/~corg/bean
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the effectiveness of Bean by comparing Bean-directed analyses against two state-

of-the-art points-to analysis. In Section 3.7, we discuss the work related to Bean.

3.2 Motivation

When analyzing Java programs, there are two types of context, a method context

for local variables and a heap context for object fields. In k-obj , a k-object-sensitive

points-to analysis [55, 75], a method context is a sequence of k allocation sites and

a heap context is typically a sequence of k − 1 allocation sites as mentioned in

Section 2.1. Given an allocation site at label `, ` is also referred to as an abstract

object for the site.

Currently, k-obj , where k = 2, represents a 2-object-sensitive analysis with a 1-

context-sensitive heap (with respect to allocation sites), denoted 2-obj [34], which

usually achieves the best trade-off between precision and scalability and has thus

been widely adopted in points-to analysis for Java [23, 43, 75]. In 2-obj , a heap

context for an abstract object ` is a receiver object of the method that made the

allocation of ` (known as an allocator object), and a method context for a method

call is a receiver object of the method plus its allocator object.

Below we examine the presence of redundant context elements in 2-obj , with

two examples, one for method contexts and one for heap contexts. This serves to

motivate the Bean approach proposed for avoiding such redundancy.

3.2.1 Redundant Elements in Method Contexts

We use an example in Figure 3.1 to illustrate how 2-obj analyzes it imprecisely

due to its use of a redundant context element in method contexts and how Bean

avoids the imprecision by avoiding this redundancy. We consider a may-alias client
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C.identity()
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(a)

(b)

(c)

Context-sensitive call graph by 2-obj

Context-sensitive call graph by BEAN

Program

1 void main(Object[] args) {
2 A a1 = new A(); // A/1
3 Object v1 = a1.foo(new Object()); // O/1
4
5 A a2 = new A(); // A/2
6 Object v2 = a2.foo(new Object()); // O/2
7 }
8 class A {
9 Object foo(Object v) {
10 B b = new B(); // B/1
11 return b.bar(v);
12 }
13 }
14 class B {
15 Object bar(Object v) {
16 C c = new C(); // C/1
17 return c.identity(v);
18 }
19 }
20 class C {
21 Object identity(Object v) { return v; }
22 }

Figure 3.1: Method contexts for 2-obj and Bean.
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that queries for the alias relation between variables v1 and v2.

In Figure 3.1(a), we identify the six allocation sites by their labels given in their

end-of-line comments, i.e., A/1, A/2, O/1, O/2, B/1, and C/1.

In Figure 3.1(b), we give the context-sensitive call graph computed by 2-obj ,

where each method is analyzed separately for each different calling context, denoted

by [...]. C.identity() has two concrete calling contexts but is analyzed only once

under [B/1,C/1]. We can see that B/1 is redundant (relative to C/1) since adding

B/1 to [C/1] fails to separate the two concrete calling contexts. As a result, variables

v1 and v2 are made to point to both O/1 and O/2 at the same time, causing may-

alias to report a spurious alias. During any program execution, v1 and v2 can only

point to O/1 and O/2, respectively.

In Figure 3.1(c), we give the context-sensitive call graph computed by Bean,

where C.identity() is now analyzed separately under two different contexts,

[A/1,C/1] and [A/2,C/1]. Due to the improved precision, v1 (v2) now points to

O/1 (O/2) only, causing may-alias to conclude that both are no longer aliases.

3.2.2 Redundant Elements in Heap Contexts

We now use an example in Figure 3.2 to illustrate how 2-obj analyzes it imprecisely

due to its use of a redundant element in heap contexts and how Bean avoids the

imprecision by avoiding this redundancy. Our may-alias client now issues an alias

query for variables emp1 and emp2. In Figure 3.2(a), we identify again its six

allocation sites by their labels given at their end-of-line comments.

Figure 3.2(b) shows the context-sensitive field points-to graph computed by

2-obj , where each node represents an abstract heap object created under the corre-

sponding context, denoted [...], and each edge represents a field points-to relation

with the corresponding field name being labeled on the edge. An array object is
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1 void main(String[] args) {
2 Company comp1 = new Company(); // Co/1
3 comp1.addEmployee(new Employee()); // Emp/1
4 Employee emp1 = comp1.getEmployee(0);
5
6 Company comp2 = new Company(); // Co/2
7 comp2.addEmployee(new Employee()); // Emp/2
8 Employee emp2 = comp2.getEmployee(0);
9 }
10 class Employee {...}
11 class Company {
12 private ArrayList emps;
13 Company() { emps = new ArrayList(); } // AL/1
14 void addEmployee(Employee emp) { emps.add(emp); }
15 Employee getEmployee(int i) {
16 return (Employee) emps.get(i);
17 }
18 }
19 class ArrayList {
20 private Object[] elems;
21 private int size = 0;
22 ArrayList() { elems = new Object[10]; } // Obj[]/1
23 void add(Object e) { elems[size++] = e; }
24 Object get(int i) { return elems[i]; }
25 }
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(b) Context-sensitive field points-to graph by 2-obj

(c) Context-sensitive field points-to graph by BEAN

(a) Program

Figure 3.2: Heap contexts for 2-obj and Bean.
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analyzed with its elements collapsed to one pseudo-field, denoted arr. Hence, x[i]

= y (y = x[i]) is handled as x.arr = y (y = x.arr).

In this example, two companies, Co/1 and Co/2, maintain their employee infor-

mation by using two different ArrayLists, with each implemented internally by a

distinct array of type Object[] at line 22. However, 2-obj has modelled the two

array objects imprecisely by using one abstract object Obj[]/1 under [AL/1]. Note

that AL/1 is redundant since adding it to [ ] makes no difference to the handling of

Obj[]/1. As a result, emp1 and emp2 will both point to Emp/1 and Emp/2, causing

may-alias to regard both as aliases conservatively.

Figure 3.2(c) shows the context-sensitive field points-to graph computed by

Bean. This time, the Object[] arrays used by two companies Co/1 and Co/2 are

distinguished under two distinct heap contexts [Co/1] and [Co/2]. As a result, our

may-alias client will no longer report emp1 and emp2 to be aliases.

3.2.3 Discussion

As illustrated above, k-obj selects blindly a sequence of k-most-recent allocation

sites as a context. To analyze large-scale software scalably, k is small, which is

2 for a method context and 1 for a heap context in 2-obj . Therefore, redundant

context elements, such as B/1 in [B/1,C/1] in Figure 3.1(b) and AL/1 in [AL/1] in

Figure 3.2(b), should be avoided since they waste precious space in a context yet

contribute nothing in separating the concrete calling contexts for a call site.

This chapter aims to address this problem in k-obj by excluding redundant

elements from its contexts so that their limited context positions can be more prof-

itably exploited to achieve better precision, as shown in Figures 3.1(c) and 3.2(c).
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Figure 3.3: Overview of Bean.

3.3 Bean

We introduce a new approach, Bean, as illustrated in Figure 3.3, to improving

the precision of a k-object-sensitive points-to analysis, k-obj . The basic idea is to

refine k-obj by avoiding its redundant context elements while maintaining still a

k-limiting context abstraction. An element e in a context c for a call or allocation

site is redundant if c with e removed does not change the context represented by c.

For example, B/1 in [B/1,C/1] in Figure 3.1(b) and AL/1 in [AL/1] in Figure 3.2(b)

are redundant.

Bean proceeds in two stages. In Stage 1, we aim to identify redundant context

elements used in k-obj . To achieve this, we first perform usually a fast but imprecise

pre-analysis, e.g., a context-insensitive Andersen’s points-to analysis on a program

to obtain its points-to information. Based on the points-to information discovered,

we construct an object allocation graph (OAG) to capture the object allocation

relations in k-obj . Subsequently, we traverse the OAG to select method and heap

contexts by avoiding redundant context elements that would otherwise be used by

k-obj . In Stage 2, we refine k-obj by avoiding its redundant context elements.

Essentially, we perform a k-object-sensitive analysis in the normal way, by using

the contexts selected in the first stage, instead.
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Figure 3.4: The OAGs for the two motivating programs in Figures 3.1 and 3.2.

3.3.1 Object Allocation Graph

The OAG of a program is a directed graph, G = (N,E). A node ` ∈ N represents

a label of an (object) allocation site in the program. An edge `1 → `2 ∈ E

represents an object allocation relation. As G is context-insensitive, a label ` ∈ G

is also interchangeably referred to (in the literature) as the (unique) abstract heap

object that models all the concrete objects created at the allocation site `. Given

this, `1 → `2 signifies that `1 is the receiver object of the method that made the

allocation of `2. Therefore, `1 is called an allocator object of `2 [75].

Figure 3.4 gives the OAGs for the two programs in Figures 3.1 and 3.2, which

are deliberately designed to be isomorphic. In Figure 3.4(a), A/1 and A/2 are

two allocators of B/1. In Figure 3.4(b), AL/1 is an allocator of Obj[]/1. Some

objects, e.g., those created in main() or static initialisers, have no allocators. For

convenience, we assume the existence of a dummy node, Oroot, so that every object

has at least one allocator. The isomorphic OAG in Figure 3.4(c) will be referred

to in Example 2.

The concept of allocator object captures the essence of object sensitivity. By

definition [55, 75], a context for an allocation site `, i.e., an abstract object `,
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consists of its allocator object (`′), the allocator object of `′, and so on. The OAG

provides a new perspective for object sensitivity, since a context for an object ` is

simply a path from Oroot to `. As a result, the problem of selecting contexts for

` can be recast as one of solving a problem of distinguishing different paths from

Oroot to `. Traditionally, a k-object-sensitive analysis selects blindly a suffix of a

path from Oroot to ` with length k.

3.3.2 Context Selection

Given an object ` in G, Bean selects its contexts in G as sequences of its direct or

indirect allocators that are useful to distinguish different paths from Oroot to ` while

avoiding redundant ones that would otherwise be used in k-obj . The key insight

is that in many cases, it is unnecessary to use all nodes of a path to distinguish

the path from the other paths leading to the same node. In contrast, k-obj is not

equipped with G and thus has to select blindly a suffix of each such path as a

context, resulting in many redundant context elements being used.

Method Contexts Figure 3.1 compares the method contexts used by 2-obj and

Bean for the first example given. As shown in Figure 3.1(b), 2-obj analyzes

C.identity() under one context [B/1,C/1], where B/1 is redundant, without being

able to separate its two concrete calling contexts. In contrast, Bean avoids using

B/1 by examining the OAG of this example in Figure 3.4(a). There are two paths

from Oroot to C/1: Oroot → A/1→ B/1→ C/1 and Oroot → A/2→ B/1→ C/1. Note

that 2-obj has selected a suffix of the two paths, B/1 → C/1, which happens to

represent the same context [B/1,C/1] for C.identity(). Bean distinguishes these

two paths by ignoring the redundant node B/1, thereby settling with the method

contexts shown in Figure 3.1(c). As a result, C.identity() is now analyzed under
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two different contexts [A/1,C/1] and [A/2,C/1] more precisely.

Heap Contexts Figure 3.2 compares the heap contexts used by 2-obj and Bean

for the second example given. As shown in Figure 3.2(b), 2-obj fails to separate

the two array objects created at the allocation site Obj[]/1 for two companies

Co/1 and Co/2 by using one context [AL/1], where AL/1 is redundant. In contrast,

Bean avoids using AL/1 by examining the OAG of this example in Figure 3.4(b).

There are two paths from Oroot to Obj[]/1: Oroot → Co/1→ AL/1→ Obj[]/1 and

Oroot → Co/2→ AL/1→ Obj[]/1. Note that 2-obj has selected a suffix of the two

paths, AL/1→ Obj[]/1, which happens to represent the same heap context [AL/1]

for Obj[]/1. Bean distinguishes these two paths by ignoring the redundant node

AL/1, thereby settling with the heap contexts shown in Figure 3.2(c). As a result,

the two array objects created at Obj[]/1 are distinguished under two different

contexts [Co/1] and [Co/2] more precisely.

3.3.3 Discussion

Bean, as shown in Figure 3.3, is designed to be a general-purpose technique for

refining k-obj with three design goals, under the condition that its pre-analysis is

sound:

• As the pre-analysis is usually less precise than k-obj , the OAG constructed

for the program may contain some object allocation relations that are not

visible in k-obj . Therefore, Bean is not expected to be optimal in the sense

that it can avoid all redundant context elements in k-obj .

• If the pre-analysis is more precise than k-obj (e.g., in some parts of the

program), then the OAG may miss some object allocation relations that are

visible in k-obj . This allows Bean to avoid using context elements that
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are redundant with respect to the pre-analysis but not k-obj , making the

resulting analysis even more precise.

• Bean is expected to be more precise than k-obj in general, with a precision

that is guaranteed to be as good as k-obj in the worst case.

3.4 Formalism

Without loss of generality, we formalize Bean as a k-object-sensitive points-to

analysis with a (k − 1)-context-sensitive heap (with respect to allocation sites), as

in [34]. Thus, the depth of its method (heap) contexts is k (k − 1). We use the

formulation and notations of points-to analysis presented in Section 2.2.3.

3.4.1 Object Allocation Graph

Figure 3.5 defines the OAG used for a program: oi → oj means that oi is an allocator

object of oj, i.e., the receiver object of the method that made the allocation of oj.

OAG G = (N,E)
node oi, oj ∈ N ⊆ H
edge oi → oj ∈ E ⊆ N ×N

Figure 3.5: Notations for object allocation graph.

Figure 3.6 gives the rules for building the OAG, G = (N,E), for a program,

based on the points-to sets computed by a pre-analysis, which may or may not

be context-sensitive. As G is (currently) context-insensitive, the context informa-

tion that appears in a points-to set (if any) is simply ignored. [OAG-Node] and

[OAG-DummyNode] build N . [OAG-Edge] and [OAG-DummyEdge] build E.

By [OAG-Node], we add to N all the pointed-to target objects found during the

pre-analysis. By [OAG-DummyNode], we add a dummy node oroot to N .
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〈 , oi〉 ∈ pt( , )

oi ∈ N
[OAG-Node]

oroot ∈ N
[OAG-DummyNode]

〈 , oi〉 ∈ pt( ,mthis) m ∈M oj is allocated in m

oi → oj ∈ E
[OAG-Edge]

oi ∈ N oi 6= oroot oi does not have any incoming edge

oroot → oi ∈ E
[OAG-DummyEdge]

Figure 3.6: Rules for building the OAG, G = (N,E), for a program based on a
pre-analysis.

By [OAG-Edge], we add to E an edge oi → oj if oi is an allocator object of

oj. Here, mthis, where m is the name of a method, represents the this variable of

method m, which points to the receiver object of method m. By [OAG-DummyEdge],

we add an edge from oroot to every object oi without any incoming edge yet, to

indicate that oroot is now a pseudo allocator object of oi. Note that an object

allocated in main() or a static initialiser does not have an allocator object. Due to

oroot, every object has at least one allocator object.

Example 1 Figure 3.4 gives the OAGs for the two programs in Figures 3.1 and 3.2.

For reasons of symmetry, let us apply the rules in Figure 3.6 to build the OAG in

Figure 3.4(a) only. Suppose we perform a context-insensitive Andersen’s points-to

analysis as the pre-analysis on the program in Figure 3.1. The points-to sets are:

pt(v1) = pt(v2) = {O/1, O/2}, pt(a1) = {A/1}, pt(a2) = {A/2}, pt(b) = {B/1},

and pt(c) = {C/1}. By [OAG-Node] and [OAG-DummyNode], N = {oroot, A/1, A/2,

B/1, C/1, O/1, O/2}. By [OAG-Edge], we add A/1 → B/1, A/2 → B/1 and B/1 →

C/1, since B/1 is allocated in foo() with the receiver objects being A/1 and A/2

and C/1 is allocated in bar() on the receiver object B/1. By [OAG-DummyEdge],

we add oroot → A/1, oroot → A/2, oroot → O/1 and oroot → O/2.

Due to recursion, an OAG may have cycles including self-loops. This means
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that an abstract heap object may be a direct or indirect allocator object of another

heap object, and conversely (with both being possibly the same).

3.4.2 Context Selection

Figure 3.7 establishes some basic relations in an OAG, G = (N,E), with possibly

cycles. By [Reach-Reflexive] and [Reach-Transitive], we speak of graph reach-

ability in the standard manner. In [Confluence], goi identifies a conventional

confluence point. In [Divergence], oi≺ot states that oi is a divergence point, with

at least two outgoing paths reaching ot, implying that either ot is a confluence point

or at least one confluence point exists earlier on the two paths.

oi ∈ N
oi oi

[Reach-Reflexive]
oi → oj ∈ E oj ok

oi ok
[Reach-Transitive]

oj → oi ∈ E ok → oi ∈ E oj 6= ok

goi
[Confluence]

oi → oj ∈ E oi → ok ∈ E oj 6= ok oj ot ok ot

oi≺ot
[Divergence]

Figure 3.7: Rules for basic relations in an OAG, G = (N,E).

Figure 3.8 gives the rules for computing two context selectors, heapCtxSelector

and mtdCtxSelector, introduced in Section 2.2.2 and used in refining an object-

sensitive points-to analysis. In heapCtxSelector(c, oi) = hc, c denotes an (abstract

calling) context of the method that made the allocation of object oi and hc is the

heap context selected for oi when oi is allocated in the method with context c.

In mtdCtxSelector( , , hc, oi) = c (the first two arguments are unused here and

ignored), hc denotes a heap context of object oi, and c is the method context

selected for the method whose receiver object is oi under its heap context hc.

For k-obj [55, 75], both context selectors are simple. In the case of full-
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ot ∈ N oroot → oi ∈ E oi ot

oti : 〈oroot≺ot, [ ]〉 if oi = ot then heapCtxSelector([ ], oi) = [ ]
[Hctx-Init]

otj :〈rep, hc〉 oj → oi ∈ E oi ot oj 6= ot

oti :〈rep′, hc′〉


rep′ = true, hc′ = hc if ¬rep ∧ oj≺ot 1
rep′ = oj≺ot, hc′ = hc++ oj if rep ∧goi 2
rep′ = rep, hc′ = hc otherwise

if oi = ot then heapCtxSelector(hc++ oj, oi) = hc′

[Hctx-Div]

otj :〈rep, hc〉 oj → oi ∈ E oi ot oj = ot

oti :〈rep′, hc′〉
{

rep′ = true, hc′ = hc++ oj, if rep ∧goi 3
rep′ = true, hc′ = hc, otherwise

if oi = ot then heapCtxSelector(hc++ oj, oi) = hc′

[Hctx-Cyc]

heapCtxSelector( , oi) = hc c = hc++ oi

mtdCtxSelector( , , hc, oi) = c
[Mctx]

Figure 3.8: Rules for context selection in an OAG, G = (N,E).

object-sensitivity, we have heapCtxSelector([o1, ..., on−1], on) = [o1, ..., on−1] and

mtdCtxSelector( , , [o1, ..., on−1], on) = [o1, ..., on] for every path from oroot to

a node on in the OAG, oroot → o1 → ... → on−1 → on. For a k-object-sensitive

analysis with a (k − 1)-context-sensitive heap, heapCtxSelector([on−k, ..., on−1], on)

= [on−k+1, ..., on−1] and mtdCtxSelector( , , [on−k+1, ..., on−1], on) = [on−k+1, ..., on].

Essentially, a suffix of length of k is selected from oroot → o1 → ... → on−1 → on,

resulting in potentially many redundant context elements to be used blindly.

Let us first use an OAG in Figure 3.9 to explain how we avoid redundant context

elements selected by k-obj . The set of contexts for a given node, denoted ot, can

be seen as the set of paths reaching ot from oroot. Instead of using all the nodes

on a path to distinguish it from the other four, we use only the five representative

nodes, labeled by 1 – 5, and identify the five paths uniquely as 1 → 3 , 1 → 4 ,
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2 → 3 , 2 → 4 , and 5 . The other six nodes are redundant with respect to ot.

The rules in Figure 3.8 are used to identify such representative nodes (on the paths

from a divergence node to a confluence node) and compute the contexts for ot.

1
2

3 4

5

Ot

Oroot

Figure 3.9: An OAG.

In Figure 3.8, the first three rules select heap contexts and the last rule selects

method contexts based on the heap contexts selected. The first three rules traverse

the OAG from oroot and select heap contexts for a node ot. Meanwhile, each rule

also records at oi, which reaches ot, a set of pairs of the form oti : 〈rep, hc〉. For a

pair oti : 〈rep, hc〉, hc is a heap context of oi that uniquely represents a particular

path from oroot to oi. In addition, rep is a boolean flag considered for determining

the suitability of oi as a representative node, i.e., context element for ot under hc

(i.e., for the path hc leading to oi). There are two cases. If rep = false, then oi is

redundant for ot. If rep = true, then oi is potentially a representative node (i.e.,

context element) for ot. hc++ o returns the concatenation of hc and o.

Specifically, for the first three rules on heap contexts, [Hctx-Init] bootstraps

heap context selection, [Hctx-Cyc] handles the special case when ot is in a cycle such

that oj = ot, and [Hctx-Div] handles the remaining cases. In [Mctx], the contexts
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for a method are selected based on its receiver objects and the heap contexts of

these receiver objects computed by the first three rules. Thus, removing redundant

elements from heap contexts benefits method contexts directly.

Figure 3.10 illustrates the four non-trivial cases marked in Figure 3.8, i.e., 1 ,

2 (split into two sub-cases), and 3 . In 1 , oi appears on a divergent path from

oj leading to ot, o
t
i’s rep′ is set to true to mark oi as a potential context element

for ot. In 2 , there are two sub-cases: ¬oj ≺ ot and oj ≺ ot. In both cases, oj is

in a branch (since otj’s rep is true) and oi is a confluence node (since goi holds).

Thus, oj is included as a context element for ot. In the case of ¬oj ≺ ot, oi is

redundant for ot under c. In the case of oj ≺ ot, the paths to ot diverge at oj.

Thus, oi can be potentially a context element to distinguish the paths from oj to

ot via oi. If oi is ignored, the two paths oj→ ok→ ot and oj→ oi→ ok→ ot as

shown cannot be distinguished. In [Hctx-Cyc], its two cases are identically handled

as the last two cases in [Hctx-Cyc], except that [Hctx-Cyc] always sets oti’s rep′

to true. If [Hctx-Cyc] is applicable, ot must appear in a cycle such that oj = ot.

Then, any successor of ot may be a representative node to be used to distinguish

the paths leading to ot via the cycle. Thus, oti’s rep′ is set to true. The first case

in [Hctx-Cyc], marked as 3 in Figure 3.8, is illustrated in Figure 3.10.

To enforce k-limiting in the rules given in Fig 3.8, we simply make every method

context hc++ oi k-bounded and every heap context hc++ oj (k − 1)-bounded.

Example 2 For the two programs illustrated in Figures 3.1 and 3.2, Bean is

more precise than 2-obj (with k = 2) in handling the method and heap contexts

of o4, shown in their isomorphic OAG in Figure 3.4(c). We give some relevant

derivations for oti, with t = 4, only. By [Hctx-Init], we obtain o41 : (true, [ ]) and

o42 : (true, [ ]). By [Hctx-Div], we obtain o43 : (false, [o1]), o43 : (false, [o2]), o44 :

(false, [o1]) and o44 : (false, [o2]). Thus, heapCtxSelector([o1,o3], o4) = [o1] and
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oj
<false, hc>

<true, hc>

<true, hc>

<false, hc   oj>++

<true, hc>

1

Oj Ot  false= Oj Ot  true=

<true, hc   oj>++

<true, hc>

<true, hc   oj>++

oi

ot

oj

oi

ot

oj

oi

ot

ok

oj

oi

[HCTX-DIV]

[HCTX-DIV] 2

[HCTX-CYC] 3

ot oj = 

Figure 3.10: Three Cases marked for [Hctx-Div] and [Hctx-Cyc] in Figure 3.8.
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heapCtxSelector([o2,o3], o4) = [o2]. By [Mctx], mtdCtxSelector( , , [o1], o4) =

[o1,o4], and mtdCtxSelector( , , [o2], o4) = [o2,o4]. For 2-obj, the contexts se-

lected for o4 are heapCtxSelector([o1,o3], o4) = [o3], heapCtxSelector([o2,o3],

o4) = [o3] and mtdCtxSelector( , , [o3], o4) = [o3,o4]. As result, Bean can suc-

cessfully separate the two concrete calling contexts for o4 and the two o4 objects

created in the two contexts but 2-obj fails to do this.

3.4.3 Bean-directed Object-Sensitive Points-to Analysis

To make use of Bean in object-sensitive points-to analysis, we just need to replace

the context selectors mtdCtxSelector and heapCtxSelector of points-to analysis in

Figure 2.2 by the selectors computed by Bean in Figure 3.8.

Compared to k-obj , Bean avoids its redundant context elements in [New] and

[Call]. In [New], heapCtxSelector (by [Hctx-Init], [Hctx-Div] and [Hctx-Cyc]) is

used to select the contexts for object allocation. In [Call], mtdCtxSelector (by

[Mctx]) is used to select the contexts for method invocation.

3.4.4 Properties

Theorem 1 Under full-context-sensitivity (i.e., when k =∞), Bean is as precise

as the traditional k-object-sensitive points-to analysis (k-obj).

Proof Sketch. The set of contexts for any given abstract object, say ot, is the

set Pt of its paths reaching ot from oroot in the OAG of the program. Let Rt be the

set of representative nodes, i.e., context elements identified by Bean for ot. We

argue that Rt is sufficient to distinguish all the paths in Pt (as shown in Figure 3.9).

For the four rules given in Figure 3.8, we only need to consider the first three

for selecting heap contexts as the last one for method contexts depends on the first

three. [Hctx-Init] performs the initialisation for the successor nodes of oroot.
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[Hctx-Div] handles all the situations except the special one when ot is in a

cycle such that ot = oj. [Hctx-Div] has three cases. In the first case, marked 1

(Figure 3.10), our graph reachability analysis concludes conservatively whether it

has processed a divergence node or not during the graph traversal. In the second

case, marked 2 (Figure 3.10), oi is a confluence node. By adding oj to hc in

hc++ oj, we ensure that for each path p from oi’s corresponding divergence node to

oi traversed earlier, at least one representative node that is able to represent p, i.e.,

oj, is always selected, i.e., to Rt. In cases 1 and 2 , as all the paths from oroot to

ot are traversed, all divergence and confluence nodes are handled. The third case

simply propagates the recorded information across the edge oj → oi.

[Hctx-Cyc] applies only when ot is in a cycle such that ot = oj. Its two cases are

identical to the last two cases in [Hctx-Div] except oti’s rep′ is always set to true.

This ensures all the paths via the cycle can be distinguished correctly. In the case,

marked 3 and illustrated in Figure 3.10, oj is selected, i.e., added to Rt.

Thus, Rt is sufficient to distinguish the paths in Pt. Hence, the theorem.

Theorem 2 For any fixed context depth k, Bean is no less precise than the tra-

ditional k-object-sensitive points-to analysis (k-obj).

Proof Sketch. This follows from the fact that, for a fixed k, based on The-

orem 1, Bean will eliminate some redundant context elements in a sequence of

k-most-recent allocation sites in general or nothing at all in the worst case. Thus,

Bean may be more precise than (by distinguishing more contexts for a call or

allocation site) or has the same precision as k-obj (by using the same contexts).
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3.5 Implementation

We have implemented Bean as a standalone tool for performing OAG construction

(Figure 3.6) and context selection (Figure 3.8), as shown in Figure 3.3, in Java. To

demonstrate the relevance of Bean to points-to analysis, we have integrated Bean

with Doop [22], a state-of-the-art context-sensitive points-to analysis framework

for Java. To apply Bean to refine an existing object-sensitive points-to analysis

written in Datalog from Doop, it is only necessary to modify some Datalog rules

in Doop to adopt the contexts selected by heapCtxSelector and mtdCtxSelector in

Bean (Figure 3.8).

Our entire Bean framework has been released as open-source software at

http://www.cse.unsw.edu.au/~corg/bean.

3.6 Evaluation

In our evaluation, we attempt to answer the following two research questions:

RQ1. Can Bean improve the precision of an object-sensitive points-to analysis at

slightly increased cost to enable a client to answer its queries more precisely?

RQ2. Does Bean make any difference for a real-world application?

To address RQ1, we apply Bean to refine two state-of-the-art whole-program

object-sensitive points-to analyses, 2-obj and S-2-obj , the top two most precise

yet scalable solutions provided in Doop [22, 34], resulting in two Bean-directed

analyses, B-2-obj and B-S-2-obj , respectively. Altogether, we will compare the

following five context-sensitive points-to analyses:

• 2-cs : 2-call-site-sensitive analysis [22]

http://www.cse.unsw.edu.au/~corg/bean
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• 2-obj : 2-object-sensitive analysis with 1-context-sensitive heap [22]

• B-2-obj : the Bean-directed version of 2-obj

• S-2-obj : selective hybrids of 2 object-sensitive analysis proposed in [22, 34]

• B-S-2-obj : the Bean-directed version of S-2-obj

Note that 2-obj is discussed in Section 3.2. S-2-obj is a selective 2-object-

sensitive with 1-context-sensitive heap hybrid analysis [34], which applies call-site-

sensitivity to static call sites and 2-obj to virtual call sites. For S-2-obj , Bean

proceeds by refining its object-sensitive part of the analysis, demonstrating its gen-

erality in improving the precision of both pure and hybrid object-sensitive analyses.

For comparison purposes, we have included 2-cs to demonstrate the superiority of

object-sensitivity over call-site-sensitivity.

We have considered may-alias and may-fail-cast, two representative clients used

elsewhere [39, 79, 75, 23] for measuring the precision of points-to analysis. The may-

alias client queries whether two variables may point to the same object or not. The

may-fail-cast client identifies the type casts that may fail at run time.

To address RQ2, we show how Bean can enable may-alias and may-fail-cast to

answer alias queries more precisely for java.util.HashSet. This container from

the Java library is extensively used in real-world Java applications.

3.6.1 Experimental Setting

All the five points-to analyses evaluated are written in terms of Datalog rules in

the Doop framework (version r160113) [14]. In our experiments, the pre-analysis

for a program is performed by using a context-insensitive Andersen’s points-to

analysis provided in Doop. Our evaluation setting uses the LogicBlox Datalog

engine (v3.9.0), on an Xeon E5-2650 2GHz machine with 64GB of RAM.
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We use all the Java programs in the DaCapo benchmark suite (2006-10-MR2) [8]

except hsqldb and jython, because all the four object-sensitive analyses, cannot

finish analyzing each of the two in a time budget of 5 hours. All these benchmarks

are analyzed together with a large Java library, JDK 1.6.0 45.

Doop handles native code (in terms of summaries) and (explicit and implicit)

exceptions [14, 33]. As for reflection, we leverage Solar [42] by adopting its string

inference to resolve reflective calls but turning off its other inference mechanisms

that may require manual annotations. We have also enabled Doop to merge some

objects, e.g., reflection-irrelevant string constants, in order to speed up each analysis

without affecting its precision noticeably, as in [22, 34].

When analyzing a program, by either a pre-analysis or any of the five points-to

analyses evaluated, its native code, exceptions and reflective code are all handled

in exactly the same way. Even if some parts of the program are unanalyzed, we

can still speak of the soundness of all these analyses with respect to the part of the

program visible to the pre-analysis. Thus, Theorems 1 and 2 still hold.

3.6.2 RQ1: Precision and Performance Measurements

Table 3.1 compare the precision and performance results for the five analyses.

Precision We measure the precision of a points-to analysis in terms of the number

of may-alias variable pairs reported by may-alias and the number of may-fail-casts

reported by may-fail-cast . For the may-alias client, the obvious aliases (e.g., due

to a direct assignment) have been filtered out, following [23]. The more precise a

points-to analysis is, the smaller these two numbers will be.

Let us consider may-alias first. B-2-obj improves the precision of 2-obj for all

the nine benchmarks, ranging from 6.2% for antlr to 16.9% for xalan, with an
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2-cs 2-obj B-2-obj S-2-obj B-S-2-obj

xalan

may-alias pairs 25,245,307 6,196,945 5,146,694 5,652,610 3,958,998

may-fail casts 1154 711 653 608 550

analysis time (secs) 1400 8653 11450 1150 1376

chart

may-alias pairs 43,124,320 4,189,805 3,593,584 3,485,082 3,117,825

may-fail casts 2026 1064 979 923 844

analysis time (secs) 3682 630 1322 1145 1814

eclipse

may-alias pairs 20,979,544 5,029,492 4,617,883 4,636,675 4,346,306

may-fail casts 1096 722 655 615 551

analysis time (secs) 1076 119 175 119 188

fop

may-alias pairs 38,496,078 10,548,491 9,870,507 9,613,363 9,173,539

may-fail casts 1618 1198 1133 1038 973

analysis time (secs) 3054 796 1478 961 1566

luindex

may-alias pairs 10,486,363 2,190,854 1,949,134 1,820,992 1,705,415

may-fail casts 794 493 438 408 353

analysis time (secs) 650 90 140 88 145

pmd

may-alias pairs 13,134,083 2,868,130 2,598,100 2,457,457 2,328,304

may-fail casts 1216 845 787 756 698

analysis time (secs) 816 131 191 132 193

antlr

may-alias pairs 16,445,862 5,082,371 4,768,233 4,586,707 4,419,166

may-fail casts 995 610 551 525 466

analysis time (secs) 808 109 162 105 163

lusearch

may-alias pairs 11,788,332 2,251,064 2,010,780 1,886,967 1,771,280

may-fail casts 874 504 450 412 358

analysis time (secs) 668 94 153 91 155

bloat

may-alias pairs 43,408,294 12,532,334 11,608,822 12,155,175 11,374,583

may-fail casts 1944 1401 1311 1316 1226

analysis time (secs) 10679 4508 4770 4460 4724

Table 3.1: Precision and performance results for all the five analyses. The two pre-
cision metrics shown are the number of variable pairs that may be aliases generated
by may-alias (“may-alias pairs”) and the number of casts that cannot be statically
proved to be safe by may-fail-cast (“may-fail casts”). In both cases, smaller is
better. One performance metric used is the analysis time for a program.
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average of 10.0%. In addition, B-S-2-obj is also more precise than S-2-obj for all

the nine benchmarks, ranging from 3.7% for antlr to 30.0% for xalan, with an

average of 8.8%. Note that the set of non-aliased variable pairs reported under 2-obj

(S-2-obj ) is a strict subset of the set of non-aliased variable pairs reported under B-

2-obj (B-S-2-obj ), validating practically the validity of Theorem 2, i.e., the fact that

Bean is always no less precise than the object-sensitive analysis improved upon.

Finally, 2-obj , S-2-obj , B-2-obj and B-S-2-obj are all substantially more precise

than 2-cs , indicating the superiority of object-sensitivity over call-site-sensitivity.

Let us now move to may-fail-cast . Again, B-2-obj improves the precision of 2-

obj for all the nine benchmarks, ranging from 5.4% for fop to 11.2% for luindex,

with an average of 8.4%. In addition, B-S-2-obj is also more precise than S-2-obj

for all the nine benchmarks, ranging from 6.7% for fop to 15.6% for luindex, with

an average of 10.8%. Note that the casts that are shown to be safe under 2-obj (S-

2-obj ) are also shown to be safe by B-2-obj (B-S-2-obj ), verifying Theorem 2 again.

For this second client, 2-obj , S-2-obj , B-2-obj and B-S-2-obj are also substantially

more precise than 2-cs .

Performance Bean improves the precision of an object-sensitive analysis at

some small increase in cost, as shown in Table 3.1. As can be seen in Figures 3.1

and 3.2, Bean may spend more time on processing more contexts introduced. B-

2-obj increases the analysis cost of 2-obj for all the nine benchmarks, ranging from

5.8% for bloat to 109.8% for chart, with an average of 54.8%. In addition, B-S-2-

obj also increases the analysis cost of S-2-obj for all the nine benchmarks, ranging

from 5.9% for bloat to 70.3% for lusearch, with an average of 49.1%.

Table 3.2 shows the pre-analysis times of Bean for the nine benchmarks. The

pre-analysis is fast, finishing within 2 minutes for the most of the benchmarks and

in under 6 minutes in the worst case. In Table 3.1, the analysis times for B-2-obj
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Benchmark xalan chart eclipse fop luindex pmd antlr lusearch bloat

CI 82.6 112.2 49.6 105.5 39.0 65.3 56.9 39.1 52.5

OAG 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.1 0.1

CTX-COMP 83.0 168.0 32.1 236.5 11.7 13.9 13.9 18.3 13.3

Total 165.8 280.4 81.8 342.2 50.9 79.3 71.0 57.5 65.9

Table 3.2: Pre-analysis times of Bean (secs). For a program, its pre-analysis time
comes from three components: (1) a context-insensitive points-to analysis (“CI”),
(2) OAG construction per Figure 3.6 (OAG), and (3) object-sensitive context com-
putation per Figure 3.8 (“CTX-COMP”).

and B-S-2-obj do not include their corresponding pre-analysis times. There are

three reasons: (1) the points-to information produced by “CI” in Table 3.2 (for

some other purposes) can be reused, (2) and the combined overhead for “OAG”

and “CTX-COMP” is small, and (3) the same pre-analysis is often used to guide

Bean to refine many object-sensitive analyses (e.g., 2-obj and S-2-obj ).

2-obj and S-2-obj are the top two most precise yet scalable object-sensitive

analyses ever designed for Java programs [34]. Bean is significant as it improves

their precision further at only small increases in analysis cost.

3.6.3 RQ2: A Real-World Case Study

Let us use java.util.HashSet, a commonly used container from the Java library

to illustrate how B-2-obj improves the precision of 2-obj by enabling may-alias and

may-fail-cast to answer their queries more precisely. In Figure 3.11, the code in

main() provides an abstraction of a real-world usage scenario for HashSet, with

some code in HashSet and its related classes being extracted directly from JDK

1.6.0 45. In main(), X and Y do not have any subtype relation.

We consider two queries: (Q1) are v1 and v2 at lines 5 and 11 aliases (from

may-alias)? and (Q2) may the casts at lines 6 and 12 fail (from may-fail-cast)?

Let us examine main(). In lines 2 – 6, we create a HashSet object, HS/1, insert
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1 void main(String[] args) {
2 HashSet xSet = new HashSet(); // HS/1
3 xSet.add(new X()); // X/1
4 Iterator xIter = xSet.iterator();
5 Object v1 = xIter.next();
6 X x = (X) v1;
7
8 HashSet ySet = new HashSet(); // HS/2
9 ySet.add(new Y()); // Y/1

10 Iterator yIter = ySet.iterator();
11 Object v2 = yIter.next();
12 Y y = (Y) v2;
13 }
14 class HashSet ... {
15 HashMap map = new HashMap(); // HM/1
16 public boolean add(Object e) {
17 return map.put(e, ...) == null;
18 }
19 public Iterator iterator() {
20 return map.newKeyIterator();
21 }
22 ...
23 }
24 class HashMap ... {
25 Entry[] table = new Entry[16]; // Entry[]/1
26 public Object put(Object key, ...) { ...
27 table[bucketIndex] = new Entry(key, ...); // Entry/1
28 ...
29 }
30 static class Entry {
31 final Object key;
32 Entry(Object k, ...) {
33 key = k;
34 }
35 }
36 private final class KeyIterator ... {
37 public Object next() { ...
38 Entry e = table[index];
39 return e.key;
40 }
41 }
42 Iterator newKeyIterator() {
43 return new KeyIterator(); // KeyIter/1
44 }
45 ...
46 }

Figure 3.11: A real-world application for using java.util.HaseSet.
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Figure 3.12: Part of OAG related to HS/1 and HS/2.

an X object into it, retrieve the object from HS/1 through its iterator into v1, and

finally, copy v1 to x via a type cast operation (X). In lines 8 – 12, we proceed as

in lines 2 – 6 except that another HashSet object, HS/2, is created, and the object

inserted into HS/2 is a Y object and thus cast back to Y.

Let us examine HashSet, which is implemented in terms of HashMap. Each

HashSet object holds a backing HashMap object, with the elements in a HashSet

being used as the keys in its backing HashMap object. In HashMap, each key and

its value are stored in an Entry object pointed by its field table.

In main(), the elements in a HashSet object are accessed via its iterator, which

is an instance of KeyIterator, an inner class of HashMap.

As before, we have labeled all the allocation sites in their end-of-line comments.

Figure 3.12 gives the part of the OAG related to the two HashSet objects, HS/1

and HS/2, which are known to own their distinct HM/1, Entry/1, Entry[]/1 and

KeyIter/1 objects during program execution.
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2-obj . To answer queries Q1 and Q2, we need to know the points-to sets of v1

and v2 found at lines 5 and 11, respectively. As revealed in Figure 3.12, 2-obj is

able to distinguish the HashMap objects in HS/1 and HS/2 by using two different

heap contexts, [HS/1] and [HS/2], respectively. However, the two iterator objects

associated with HS/1 and HS/2 are still modeled under one context [HM/1] as one

abstract object KeyIter/1, which is pointed to by xIter at line 5 and yIter at

line 11. By pointing to X/1 and Y/1 at the same time, v1 and v2 are reported as

aliases and the casts at lines 6 and 12 are also warned to be unsafe.

B-2-obj . By examining the part of the OAG given in Figure 3.12, B-2-obj rec-

ognizes that HM/1 is redundant in the single heap context [HM/1] used by 2-obj for

representing Entry/1, Entry[]/1 and KeyIter/1. Thus, it will create two distinct

sets of these three objects, one under [HS/1] and one under [HS/2], causing v1 (v2)

to point to X/1 (Y/1) only. For query Q1, v1 and v2 are no longer aliases. For

query Q2, the casts at lines 6 and 12 are declared to be safe.

3.7 Related Work

Object-sensitivity, introduced by Milanova et al. [53, 55], has now been widely used

as an excellent context abstraction for points-to analysis in object-oriented lan-

guages [34, 40, 75]. By distinguishing the calling contexts of a method call in terms

of its receiver object’s k-most-recent allocation sites (rather than k-most-recent

call sites) leading to the method call, object-sensitivity enables object-oriented

features and idioms to be better exploited. This design philosophy enables a k-

object-sensitive analysis to yield usually significantly higher precision at usually

much less cost than a k-CFA analysis [39, 23, 34]. The results from our evaluation

have also validated this argument further. In Table 3.1, 2-obj is significantly more
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precise than 2-cs in all the configurations considered and also significantly faster

than 2-cs for all the benchmarks except xalan.

There once existed some confusion in the literature regarding which allocation

sites should be used for context elements in a k-object-sensitive analysis [24, 25,

36, 39, 55, 79]. This has recently been clarified by Smaragdakis et al. [75], in which

the authors demonstrate that the original statement of object-sensitivity given by

Milanova et al. [55], i.e., full-object-sensitivity in [75], represents a right approach

in designing a k-object-sensitive analysis while the other approaches (e.g., [36])

may result in substantial loss of precision. In this chapter, we have formalized and

evaluated Bean based on this original design [55, 75].

For Java programs, hybrid object-sensitivity [34] enables k-CFA (call-site-

sensitivity) to be applied to static call sites and object/type-sensitivity to virtual

call sites. The resulting hybrid analysis is often more precise than their corre-

sponding non-hybrid analyses at sometimes less and sometimes more analysis cost

(depending on the program). As a general approach, Bean can also improve the

precision of such a hybrid points-to analysis, as demonstrated in our evaluation.

Type-sensitivity [75], which is directly analogous to object-sensitivity, provides

a new sweet spot in the precision-efficiency trade-off for analyzing Java programs.

This context abstraction approximates the allocation sites in a context by the

class types containing the allocation sites, making itself more scalable but less

precise than object-sensitivity [34, 75]. In practice, type-sensitivity usually yields

an acceptable precision efficiently [42, 43]. How to generalize Bean to refine type-

sensitive analysis is considered as future work.

Oh et al. [63] introduce a selective context-sensitive program analysis for C. The

basic idea is to leverage a pre-impact analysis to guide a subsequent main analysis

in applying context-sensitivity to where the precision is likely to be improved with
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respect to a given query. Although both the analysis and Bean select contexts

to improve precision, there are two fundamental differences. First, our goals are

different. Their approach is query-directed, i.e., the pre-impact analysis is used to

estimate when and where applying context-sensitivity could help resolve a given

query. However, Bean is designed to improve the precision of a whole-program

points-to analysis [14, 36, 75, 34, 76], so that all the clients and queries depend-

ing on it may directly benefit from the improved points-to information obtained.

Second, our methodologies are different. Their pre-analysis selects contexts via a

full-context-sensitive analysis with simple query-related domain, while ours selects

contexts by traversing a program-related graph (OAG).



Chapter 4

Mahjong: Efficient Points-to

Analysis by Merging Equivalent

Automata

4.1 Overview

Every points-to analysis, especially for object-oriented languages such as Java,

requires a heap abstraction [32, 46] for partitioning the infinitely-sized heap into

a finite number of (abstract) objects as discussed in Section 2.1. However, little

progress has been made on developing heap abstractions for points-to analysis.

Mainstream points-to analysis frameworks for Java, such as Doop [22], Soot [77],

Chord [16], and Wala [98], rely predominantly on the allocation-site abstraction

to model heap objects. In this case, distinct allocation sites are represented by

distinct (abstract) objects, with one object per site, which can be further separated

context-sensitively in an orthogonal manner.

As programming languages become more heap-intensive, the need for effective

49
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heap abstractions is greater [72, 80, 32]. The suitability of the allocation-site ab-

straction as an universal solution for all clients of points-to analysis needs to be

revisited. While maximizing the precision for may-alias, this abstraction often over-

partitions the heap without improving the precision much for an important class of

type-dependent clients such as call graph construction, devirtualization and may-fail

casting, causing often the underlying points-to analysis to be unscalable for large

programs. For this reason, Doop [22] and Wala [98], provide an option for all ob-

jects of a certain class, such as java.lang.String or java.lang.StringBuffer,

to be merged ad hocly.

In this chapter, we present Mahjong, a novel heap abstraction that is specifi-

cally developed to address the needs of type-dependent clients. Given a program, we

first create a lightweight alternative of the allocation-site abstraction by perform-

ing a fast but imprecise allocation-site-based points-to analysis as a pre-analysis

and then use it to drive a subsequent points-to analysis. Based on the points-to

information found during the pre-analysis, Mahjong merges two objects if both

are type-consistent, i.e., if the objects reached from both along the same sequence

of field accesses have a common type. We formulate the problem of checking the

type-consistency of two objects as one of testing the equivalence of two sequential

automata in almost linear time, by applying a classic Hopcroft-Karp algorithm [30]

with minor modifications. Mahjong is simple conceptually and can be easily

added on any allocation-site-based points-to analysis.

Compared to the allocation-site abstraction, Mahjong allows a points-to anal-

ysis to run significantly faster while achieving nearly the same precision for type-

dependent clients. Thus, Mahjong makes it possible to accelerate a given points-

to analysis or replace it with a more precise but usually more costly points-to

analysis that is either inefficient or unscalable if the allocation-site abstraction is
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used. Mahjong is expected to provide significant benefits to many program anal-

yses, such as bug detection, security analysis, program verification and program

understanding, where call graphs are required [58, 59, 106, 10, 43, 6, 25, 81].

We demonstrate the effectiveness of Mahjong by discussing some insights on

why it is a better alternative of the allocation-site abstraction for type-dependent

clients and conducting an evaluation extensively on 12 large Java programs with

five widely used context-sensitive points-to analyses and three significant type-

dependent clients, call graph construction, devirtualization and may-fail casting

[76, 34, 75, 39, 79]. Take, 3-obj, a 3-object-sensitive points-to analysis [53], the

most precise one used in our evaluation, as an example. For the four programs

that can be analyzed scalably under 3-obj, our Mahjong-based 3-obj runs 131X

faster, on average, while achieving nearly the same precision for all the three clients.

For the remaining eight, where 3-obj is unscalable in 5 hours each, our Mahjong-

based 3-obj can analyze five of them in an average of 33.42 minutes.

In summary, this chapter makes the following contributions:

• We present Mahjong, a new heap abstraction that can significantly scale

an allocation-site-based points-to analysis for object-oriented programs while

achieving nearly the same precision for type-dependent clients.

• We formulate the problem of checking the type-consistency of two objects as

one of testing the equivalence of two automata, which is solvable in almost

linear time.

• We implement Mahjong as a standalone open-source tool. Mahjong is

simple (with only 1500 LOC of Java in total) and can be easily added on any

allocation-site-based points-to analysis.

• We conduct extensive experiments to evaluate Mahjong by applying it to
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five commonly used context-sensitive points-to analyses on 12 large Java pro-

grams. Our evaluation demonstrates the effectiveness of Mahjong.

The rest of this chapter is organized as follows. We first describe the motivation

of Mahjong in Section 4.2. Then, in Section 4.3, we present the methodology of

Mahjong. In Section 4.4, we give the algorithms of Mahjong. The implemen-

tation of Mahjong is introduced in Section 4.5. In Section 4.6, we evaluate the

effectiveness of Mahjong in practice. In Section 4.7, we discuss the research work

related to Mahjong.

4.2 Motivation

For points-to analysis, type-dependent clients, such as call graph construction, de-

virtualization and may-fail casting, share similar needs: their precision depends on

the types of pointed-to objects rather than the pointed-to objects themselves. For

such clients, the conventional allocation-site abstraction is often too fine-grained,

contributing little to improving their precision but rendering the underlying points-

to analysis unduly inefficient or eventually unscalable. In this chapter, we aim to

improve this by looking for a lightweight alternative that satisfies the needs of

type-dependent clients, but not necessarily others such as may-alias. To this end,

we would like to avoid distinguishing two objects if merging them loses no or little

precision for type-dependent clients.

In Section 4.2.1, we see that blindly merging objects of the same type is inef-

fective. In Section 4.2.2, we describe our solution that merges objects representing

equivalent automata only. For object-oriented programs, merging objects amounts

to merging their corresponding allocation sites.
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1 void main(String[] args) {

2 A x = new A(); // oA1
3 A y = new A(); // oA2
4 A z = new A(); // oA3
5 x.f = new B(); // oB4
6 y.f = new C(); // oC5
7 z.f = new C(); // oC6
8 A a = z.f;
9 a.foo();

10 C c = (C) a;
11 }
12 class A {
13 A f;
14 void foo() {...}
15 }
16 class B extends A {
17 void foo() {...}
18 }
19 class C extends A {
20 void foo() {...}
21 }

Figure 4.1: An example program illustrating object merging.

4.2.1 Allocation-Type Abstraction: A Naive Solution

In this so-called allocation-type abstraction, all objects with the same type are

merged, with one object per type. As previously noted, this naive solution often

gains efficiency but may incur a significant loss of precision [32, 45, 99, 72].

Example 3 Consider Figure 4.1, where oti represents the abstract object of type t

created at the allocation site with label i.

For the three type-dependent clients, call graph construction, devirtualization

and may-fail casting, only lines 9 – 10 are relevant. According to an allocation-

site-based Andersen’s points-to analysis [5], x, y and z point to oA1 , oA2 and oA3 , re-

spectively. As x.f, y.f and z.f are not aliases, a points to oC6 . Thus, a.foo() at

line 9 has only one callee, C::foo(), and can thus be devirtualized as a monomor-

phic call, and in addition, the cast (C) at line 10 is safe.
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However, if oA1 , oA2 and oA3 are merged, then x.f, y.f and z.f will be aliases,

causing a to also point to oB4 . As a result, a.foo() becomes a polymorphic call as it

has two callee methods (B::foo() and C::foo()), and thus cannot be devirtualized.

In addition, the cast (C) is no longer considered safe. �

Consider pmd, a program analyzed by (1) 3-obj — a 3-object-sensitive points-to

analysis [53] using the allocation-site abstraction, (2) T-3-obj — 3-obj using the

allocation-type abstraction, and (3) M-3-obj — 3-obj using our Mahjong heap

abstraction. For 3-obj, pmd is analyzed in 14469.3 seconds, allowing 44004 call

graph edges to be discovered. T-3-obj is the fastest (50.3 seconds), but is the

most imprecise (50666 call graph edges). In contrast, M-3-obj is as precise as 3-obj

(44016 call graph edges) but is also nearly as fast as T-3-obj (127.7 seconds).

4.2.2 Mahjong: Our Solution

To address the needs of type-dependent clients, Mahjong is designed to maximally

preserve the precision of the allocation-site abstraction while reaping the efficiency

of the allocation-type abstraction as much as possible. For a given program, we

first build a heap abstraction by performing a pre-analysis, i.e., a fast but imprecise

allocation-site-based Andersen’s points-to analysis [5] and then use it to guide a

subsequent points-to analysis. Based on the pre-analysis, we define type-consistent

objects that can be merged (Section 4.2.2.1) and formulate the problem of check-

ing the type-consistency of two objects as one of testing the equivalence of two

automata in almost linear time (Section 4.2.2.2).

4.2.2.1 Defining Type-Consistent Objects

After the pre-analysis, the field points-to graph (FPG) is available, representing

the points-to information for the object fields. To facilitate a subsequent reduction
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Figure 4.2: Field points-to graph rooted at oT1 and oT2 .

of the problem of checking type-consistency as one of testing the equivalence of

automata, we introduce the field points-to graph rooted at an object o as Go =

(H,F , α, o, T , τ). H is the set of objects reachable from o. F is the set of field

names traversed along the way. The points-to relations for the object fields are

defined by a field points-to map α : H × F 7→ P(H). T is the set of types of the

objects in H. The object-to-type map τ : H 7→ T reveals the type of an object.

Figure 4.2 gives the field points-to graphs rooted at oT1 and oT2 , by using the

same notation for objects in Figure 4.1.

Example 4 Consider oT2 first in Figure 4.2. GoT2 = (H,F , α, oT2 , T , τ). H =

{oT2 , oU4 , oX6 , oY8 }; F = {f, g, h, k}; α[oT2 , f ] = {oU4 }, α[oU4 , h] = {oY8 }, α[oT2 , g] =

{oX6 }, and α[oX6 , k] = {oY8 }; T = {T, U,X, Y }; and τ[oT2 ] = T , τ[oU4 ] = U ,

τ[oX6 ] = X, and τ[oY8 ] = Y . Similarly, GoT1 can be constructed. �

Unlike the allocation-type abstraction, where all the objects with the same

type are merged blindly, we will merge so-called type-consistent objects, thereby

avoiding the imprecision introduced by the allocation-type abstraction.

Let f̄ = f1.f2. · · · .fn be a sequence of field names. For the field points-to graph

Go rooted at an object o, we write pts(o.f̄) to represent the set of objects that can

be reached from o along any path of points-to edges labeled by f1, f2, . . . , fn in Go
in that order. In Figure 4.2, pts(oT1 .f) = {oU3 } and pts(oT1 .f.h) = {oY7 , oY9 }.
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Two objects with the same type are type-consistent if traversing from the two

objects along the same sequence of field names always lead to objects of the same

single type.

Definition 1 (Type-Consistent Objects) Two objects, oi and oj, with the same

type are said to be type-consistent, denoted oi ≡ oj, if for every non-empty sequence

of field names, f̄ = f1.f2. · · · .fn, the following two conditions hold:

1. {τ[o] | o ∈ pts(oi.f̄)} = {τ[o] | o ∈ pts(oj.f̄)}, and

2.
∣∣∣{τ[o] | o ∈ pts(oi.f̄)}

∣∣∣ = 1.

In Figure 4.2, oT1 and oT2 are type-consistent. For the objects reached from oT1

and oT2 , along f , f.h, g and g.k, their sets of types are {U}, {Y }, {X} and {Y },

respectively.

We illustrate the intuition behind the notion of type-consistency with an exam-

ple discussed below.

Example 5 Let us return to Figure 4.1, for which the allocation-type abstraction

will merge oA1 , oA2 and oA3 (Section 4.2.1). By Definition 1, oA2 and oA3 are type-

consistent (as oA2 .f points to oC5 and oA3 .f points to oC6 ) but oA1 is not type-consistent

with any (as oA1 .f points to oB4 ). After oA2 and oA3 are merged, y.f and z.f are

regarded as aliases. Thus, a will point to not only oC6 as before but also oC5 spu-

riously. However, as oC5 and oC6 have the same type C, the precision of call graph

construction and devirtualization at line 9 as well as may-fail casting at line 10 is

not affected. �

Let us examine Definition 1. Condition 1 is self-explanatory in order to maxi-

mally preserve precision for type-dependent clients. What is the rationale behind

Condition 2? The pre-analysis is fast but imprecise. Its enforcement maximally

avoids precision loss, as illustrated below.
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Figure 4.3: Illustrating Condition 2 in Definition 1.

Example 6 Suppose oTi .f and oTj .f point to both oX1 and oY2 during the pre-analysis

(Figure 4.3(a)) but oX1 and oY2 , respectively, in a more precise allocation-site-based

points-to analysis, A (Figure 4.3(b)). If Condition 2 is ignored, oTi and oTj will

become type-consistent according to the pre-analysis and thus merged into, say, oTk

(represented by oTi or oTj ). Running A with this new heap abstraction will result

in precision loss, as oTi .f and oTj .f now point to objects of both types X and Y

(Figure 4.3(c)). �

In Definition 1, the type-consistency relation ≡ is an equivalence relation. It is

straightforward to verify that ≡ is reflexive, symmetric and transitive.

Let H be the set of all abstract objects in the program as in formulation for

points-to analysis in Section 2.2.

Definition 2 (Mahjong’s Heap Abstraction) Given the quotient set, H / ≡,

Mahjong will merge all the objects in the same equivalence class into one object.
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Therefore, the key insight behind our new heap abstraction is not to distinguish

two (container) objects of the same type if both containers store the objects of the

same type at all their corresponding nested sub-containers.

How do we check the type-consistency of two objects efficiently, especially for

large programs with a large number of heap objects, field names and class types?

Enumerating all the possible field access paths f̄ as required in Definition 1, espe-

cially in the presence of cycles, may be exponential in terms of the number of edges

traversed [65, 51], causing the pre-analysis to be too inefficient or even unscalable.

We describe a fast and elegant solution below.

4.2.2.2 Merging Equivalent Automata

We transform the problem of checking the type-consistency of two objects into one

of testing the equivalence of two automata. Figure 4.4 relates the field points-to

graph rooted at an object o, Go = (H,F , α, o, T , τ), to a 6-tuple sequential automa-

ton Ao = (Q,Σ, δ, qo,Γ, γ) [1], which is more general than a traditional (5-tuple)

automaton. In fact, a 5-tuple automaton can be turned into a 6-tuple automa-

ton, if its accepting (acc) and non-accepting (non-acc) states are distinguished by

γ : Q 7→ Γ, where Γ = {acc, non-acc}.

Example 7 Continuing from Example 4 (Figure 4.2), the automaton AoT2
for

GoT2 = (H,F , α, oT2 , T , τ) is obtained according to Figure 4.4. Similarly, AoT1
is

constructed. �

The behavior of Ao, which can be an NFA (consisting of multiple edges with

the same label leaving a state), is:

βAo : Σ∗ → P(Γ)

If Ao reaches the states, s1, s2, · · · , sn, after having read an input w in Σ∗, then:
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βAo(w) =
n⋃

i=1

γ[si]

Let oT1 and oT2 be two objects with the same type T . Let their automata AoT1

and AoT2
be built as shown in Figure 4.4. oT1 and oT2 are type-consistent if, for

every input w in Σ∗, (1) βA
oT1

(w) = βA
oT2

(w) (Condition 1 of Definition 1) and (2)∣∣βA
oT1

(w)
∣∣ = 1 (Condition 2 of Definition 1).

Therefore, we have reduced the problem of checking the type-consistency of

oT1 and oT2 to one of testing the equivalence of their corresponding automata AoT1

and AoT2
, which is solvable in almost linear time by a classic Hopcroft-Karp algo-

rithm [30] with minor modifications. The worst-case time complexity is O(|Σ| ×

|Qlarger|), where Qlarger is the set of states of the larger automaton.

Example 8 Continuing from Example 7, we see easily that oT1 and oT2 are type-

consistent (Figure 4.2) since their corresponding automata AoT1
and AoT2

are equiv-

alent. �

4.3 Mahjong

We first give an overview of Mahjong that consists of four components (Sec-

tion 4.3.1). We then describe each component in detail (Sections 4.3.2 – 4.3.5).

Finally, we discuss Mahjong-based points-to analysis (Section 4.3.6).

4.3.1 Overview of Mahjong

As shown in Figure 4.5, Mahjong takes the field points-to graph (FPG) computed

by a pre-analysis (Section 4.2.2.1) as input and builds a heap abstraction (Defini-

tion 2) to be used by a subsequent points-to analysis. The pre-analysis is fast but

imprecise, by using Andersen’s algorithm [5] with the allocation-site abstraction,
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Figure 4.5: Overview of Mahjong.

context-insensitively. The subsequent points-to analysis will be more precise, usu-

ally performed context-sensitively, especially for object-oriented programs, based

on the Mahjong heap abstraction.

Mahjong iteratively picks a pair of objects oTi and oTj with the same type T

and merges them if they are type-consistent, until no such pair can be found. Given

oTi and oTj , their corresponding NFAs, NFAoTi
and NFAoTj

, are first built by using

the NFA Builder. Then the two NFAs are converted into their equivalent DFAs,

DFAoTi
and DFAoTj

, by using the DFA Converter. Next, the Automata Equivalence

Checker determines whether DFAoTi
and DFAoTj

are equivalent or not. Finally, the

Heap Modeler outputs a new heap abstraction.

4.3.2 The NFA Builder

The NFA builder takes an object o, with the field points-to graph Go rooted at o,

and constructs a 6-tuple NFA Ao = (Q,Σ, δ, q0,Γ, γ) according to the mapping, as

shown in Figure 4.4. In fact, Ao can be immediately read off from Go.

4.3.3 The DFA Converter

To ease the test of automata equivalence, we convert NFA to DFA. The DFA

Converter converts an NFA to an equivalent DFA based on the subset construc-
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tion algorithm [2] with minor modifications. The resulting DFA is still a 6-tuple

sequential automaton except that it is deterministic.

4.3.4 The Automata Equivalence Checker

The Automata Equivalence Checker tests the equivalence of two DFAs by applying

a classic Hopcroft-Karp algorithm [30] with minor modifications in almost linear

time.

4.3.5 The Heap Modeler

After all type-consistent objects have been found, the type-consistency equivalence

relation ≡ given in Definition 1 becomes fully constructed. By Definition 2, the

new heap abstraction found is simply given by H / ≡. For every equivalent class

[oTi ] ∈ H / ≡, a representative object oTj is arbitrarily picked to substitute for the

other objects in the class. Essentially, the allocation sites for all objects in [oTi ] are

merged and represented by the allocation site of oTj only.

To enable a points-to analysis to use our new heap abstraction, we only need

to change its rule for handling allocation sites. Given i : x = new T() in a Java

program, where oTj is a representative for [oTi ], x is made to point to oTj .

4.3.6 Mahjong-based Points-to Analysis

LetA be an allocation-site-based points-to analysis introduced in Section 2.2, which

is either call-site-sensitive [99, 39, 79, 23], object-sensitive [53, 95, 76] or type-

sensitive [75]. We first discuss how to obtain M-A, a Mahjong-based points-to

analysis, from A (Section 4.3.6.1). We then discuss briefly the soundness and

precision of M-A relative to A for type-dependent clients.
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4.3.6.1 Obtaining M-A from A

In a context-sensitive points-to analysis, local variables are analyzed context-

sensitively by distinguishing the calling contexts for a method. Heap objects are

modeled context-sensitively by distinguishing the calling contexts for allocation

sites. Different context-sensitivity are distinguished by different kinds of context

elements used, as discussed below.

We obtain M-A from A by first replacing A’s allocation-site abstraction with

the Mahjong heap abstraction. We then need to make minor modifications to A

to enable M-A to handle merged objects effectively.

Regardless of whether A is call-site-, object- or type-sensitive, M-A will always

model a merged object o context-insensitively. There would be of little benefit

in modeling o context-sensitively, since the objects accessed by o.f1.f2. · · · .fn for

any f1.f2. · · · .fn under different contexts are expected to have the same type, in

practice. Below we briefly review the three kinds of context-sensitivity presented

in Section 2.2.3 and discuss how the calling contexts for methods are modified, if

needed, when they are related to merged objects.

Call-Site-Sensitivity A k-call-site-sensitive points-to analysis, i.e., a k-CFA [71]

separates information on local variables per call-stack (i.e., sequence of k call-sites)

of method invocations that lead to the current method. By convention, a sequence

of k − 1 call-sites is used as a calling context for an allocation site [75, 34, 95].

If A is k-call-site-sensitive [71], then M-A behaves identically as A in handling

methods. For the reason mentioned above, M-Amodels the merged objects context-

insensitively but everything else context-sensitively as in A.

Object-Sensitivity k-object-sensitivity is similar to k-call-site-sensitivity except

that allocation sites rather than call sites are used as context elements [53]. Let
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oi be an abstract object identified by its allocation site i. In k-object-sensitivity,

the object oi at allocation site i is modeled context-sensitively by a calling context

[oik−1
, . . . , oi1 ] (of length k−1), where ij is the allocation site for the receiver object

oij of the method that contains allocation site ij−1 (with i0 = i). If x points to an

object oi modeled under a context [oik−1
, . . . , oi1 ], then the k-object-sensitive calling

context used for analyzing the callee of x.foo() is [oik−1
, . . . , oi1 , oi].

If A is a k-object-sensitive points-to analysis, M-A models merged objects

context-insensitively, i.e., object-insensitively but everything else objective-sensitively

as in A. As a result, calling contexts that contain merged objects as context ele-

ments are modified accordingly. For an object o that is used in a calling context

under A, o is replaced by a representative of [o] ∈ H / ≡ (Section 4.3.5) under

M-A. In other words, if o is merged with some type-consistent objects, then its

representative is used, instead.

Type-Sensitivity To trade precision for efficiency, k-type-sensitivity is derived

from k-object-sensitivity by replacing every object in a calling context with the

class type that contains the corresponding allocation site for the object [75].

If A is a k-type-sensitive analysis obtained from its corresponding k-object-

sensitive analysis A′, then M-A is simply obtained from M-A′ in the same type-

sensitive manner.

4.3.6.2 Soundness and Precision of M-A over A

The soundness of M-A is easy to establish. If A is sound, then M-A is also sound

as the Mahjong heap abstraction is coarser than the allocation-site abstraction

used in A.

We discuss some insights below on why merging type-consistent objects enables

M-A to maximally preserve the precision of A for type-dependent clients. This is
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true for all three types of context-sensitivity as validated later.

We first describe a rarely occurring subtle case, the null-field problem, illustrated

in Figure 4.6, due to the imprecision of the pre-analysis, causing precision loss for

all the three types of Mahjong-based context-sensitivity.

Example 9 Suppose oTi .f and oTj .f both point to oX1 during the pre-analysis (Fig-

ure 4.6(a)) but oX1 and null, respectively, in A (Figure 4.6(b)). In M-A, oTi and

oTj are type-consistent and thus merged into oTk (represented by either oTi or oTj ),

M-A is less precise, as oTj .f , which points to null in A, now points to an object of

type X (Figure 4.6(c)). �

(a) Pre-Analysis (b) (c)

null 

f 
O T i O X 

1 
f 

O T j O X 
1 

O T k 

M-

f 
O T i O X 

1 
f 

O T j 

f 
O X 

1 

Figure 4.6: Illustrating the null-field problem.

If A is call-site-sensitive, M-A is equally precise as A for a type-dependent client

if the null-field problem never occurs in a program analyzed by A. Recall that the

pre-analysis is no more precise than A. By Definition 1, the objects reached from o

along the same sequence of field accesses must have exactly the same type when o

is modeled both context-sensitively under A and context-insensitively under M-A,

resulting in the same precision in both cases. In general, M-A is no more precise

than A due to the null-field problem but very close to A as the null-fields are rare.

If A is object-sensitive, then M-A is no more precise than A for type-dependent

clients, as some objects that are used in distinguishing different contexts in A are

merged by Mahjong if they are type-consistent. However, this hardly hurts the

precision, making M-A nearly as precise asA for type-dependent clients, in practice.
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The key insight behind object-sensitivity [53, 55] is to distinguish the side-effects

of different receiver objects of an instance method T::foo() by analyzing it under

multiple calling contexts, one per receiver object. By merging the type-consistent

receiver objects for T::foo(), we end up achieving a significant performance benefit

at little precision loss by analyzing T::foo() under the same context by M-A

rather than separately but unnecessarily by A for these receiver objects. For type-

dependent clients, this represents a generalization of object-sensitivity.

IfA is type-sensitive, then M-A is nearly as precise as (sometimes slightly better

or worse than) A for type-dependent clients, in practice. Consider an equivalence

class [o] = {o1, . . . , on} ∈ H / ≡ (Definition 2) formed by the Mahjong heap

abstraction. In A, every oi that is used as a context element in a calling context

is replaced by the class type that contains the allocation site for oi. In M-A,

o1, . . . , on are merged and replaced by the class type that contains the allocation

site for a representative in [o]. Thus, the Mahjong heap abstraction can be coarser

than the allocation-site abstraction for some methods and finer for some others in

partitioning their calling contexts.

4.4 Algorithms

We present the algorithms used in Mahjong. In Section 4.4.1, we give some

domains used and then the main algorithm. In Section 4.4.2-4.4.5, we describe the

algorithms of its four components, introduced in Sections 4.3.2 – 4.3.5.

4.4.1 Mahjong

For a program, we use the three domains: (1) H is the set of all abstract heap

objects (i.e., allocation sites), (2) F is the set of all field names, and (3) T is the
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set of all types. Note that we have introduced these domains in Section 2.2.1 and

also have used H earlier in Definition 2.

Now, we can formally define the input and output of Mahjong. Mahjong

takes a field points-to graph, FPG = (N, E), which is a directed weighted graph,

as input. A node oi ∈ N = H represents a heap object in the program. An edge

(oi, f, oj) ∈ E ⊆ N × F × N indicates that oi.f points to oj. We assume that

the FPG contains a dummy node onull to represent null. If oi.f = null, then

(oi, f, onull) ∈ E. We also assume (onull, f, onull) ∈ E for every field f ∈ F.

The output of Mahjong is a new heap abstraction, represented by a merged

object map, MOM ⊆ H → H, which relates an object in an equivalence class in

H / ≡ to its representative object (as described in Section 4.3.5).

Algorithm 1 gives the main algorithm. To facilitate merging type-consistent

objects, we make use of the concept of disjoint sets [17]. In a set S of disjoint

sets, each disjoint set is identified by a representative, which is some member of

the disjoint set. We make use of two classic operations over disjoint sets, Union

and Find. S.Union(x, y) unites two disjoint sets in S that contain x and y, say

Sx and Sy, into a new disjoint set that is the union of the two, adds it to S, and

destroys Sx and Sy in S. The representative of the new set is any member of Sx∪Sy.

S.Find(x) returns the representative of the disjoint set in S that contains x.

Mahjong first initializes W by adding to it a singleton set for each object (lines

1 – 3). Then it iterates over every pair of objects, oi and oj in H, that are not yet

merged, and merges the pair if both are type-consistent (lines 4 – 13). According

to line 5, oi and oj are mergeable only if both have the same type. The function

TypeOf : H→ T returns the type of a given object and a special type for onull.

To check the type consistency of oi and oj by Definition 1 efficiently, we handle

its two conditions separately, with Condition 2 in lines 6 – 7 and Condition 1 in
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Algorithm 1: Mahjong

Input : FPG (Field Points-to Graph)
Output: MOM (Merged Object Map)

1 Let W be a new set
2 foreach o ∈ H do
3 Add {o} to W

4 foreach oi, oj ∈ H s.t. W .Find(oi) 6= W .Find(oj) do
5 if TypeOf(oi) == TypeOf(oj) and
6 SingleType-Check(oi, FPG) and
7 SingleType-Check(oj, FPG) then

8 NFAoi = Nfa-Builder(oi, FPG)
9 NFAoj = Nfa-Builder(oj, FPG)

10 DFAoi = Dfa-Converter(NFAoi)
11 DFAoj = Dfa-Converter(NFAoj)

12 if Equiv-Checker(DFAoi, DFAoj) then
13 W .Union(oi, oj)

14 Let MOM be a new map
15 foreach o ∈ H do
16 MOM[o] = W .Find(o)

17 return MOM

lines 8 – 12. In lines 6 – 7, the function SingleType-Check : H×FPG→ {TRUE,

FALSE} is applied to see if Condition 2 holds for both oi and oj. If so, Mahjong

then proceeds to build the NFAs for the two objects (Section 4.4.2), convert the

NFAs to their equivalent DFAs (Section 4.4.3), and finally, test their equivalence

(Section 4.4.4). If the two DFAs are equivalent, then Mahjong calls W .Union(oi,

oj) to merge oi and oj at line 13. Finally, in lines 14 – 16, Mahjong builds a new

heap abstraction as desired (Section 4.4.5).

4.4.2 The NFA Builder

Given an object o, Algorithm 2 (NFA-Builder) builds an NFA,Ao =(Q,Σ, δ, q0,Γ, γ),

according to the mapping from the field points-to graph rooted at o to Ao in Fig-
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ure 4.4.

Algorithm 2: Nfa-Builder

Input :
o (Input object)
FPG = (N, E) (Field Points-to Graph)

Output: NFA = (Q,Σ, δ, q0,Γ, γ)
1 q0 = o
2 Let Q be a set of objects reachable from o in FPG
3 Let Σ and Γ be two new sets
4 Let γ and δ be two new maps
5 foreach oi ∈ Q do
6 Σ = Σ ∪ FieldsOf(oi)
7 Γ = Γ ∪ {TypeOf(oi) }
8 γ[oi] = TypeOf(oi)

9 foreach (oi, f, oj) ∈ E do
10 if oi ∈ Q then
11 Add oj to δ[oi, f ]

12 return NFA = (Q,Σ, δ, q0,Γ, γ)

Nfa-Builder constructs all the six components for Ao. Its initial state q0 is

simply o (line 1). Q is the set of objects reachable from o in FPG (line 2). The

objects in Q are iterated over to build Σ (set of input symbols), Γ (set of output

symbols), and γ (output map) at lines 5 – 8. The function FieldsOf : H→ P(F)

returns the fields of a given object. Finally, the relevant edges in FPG are traversed

to build the state transition map δ (lines 9 – 11).

4.4.3 The DFA Converter

Algorithm 3 (Dfa-Converter) converts an NFA to its equivalent DFA by using

the subset construction [2].

There are three minor differences between Algorithm 3 and the standard subset

construction [2]. First, we do not need to handle (non-existent) ε-transitions. Sec-

ond, we can find the next states of a DFA state q more efficiently. In the general
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Algorithm 3: Dfa-Converter

Input : NFA = (Q,Σ, δ, q0,Γ, γ)
Output: DFA = (Q′,Σ′, δ′, q′0,Γ

′, γ′)
1 q′0 = {q0}
2 Σ′ = Σ
3 Let Q′ and Γ′ be two new sets
4 Let δ′ and γ′ be two new maps
5 Add q′0 as an unmarked state to Q′

6 while there is an unmarked state q ∈ Q′ do
7 Mark q
8 Pick any oi from q
9 foreach f ∈ FieldsOf(oi) do

10 q′ = { δ[oj, f ] | oj ∈ q }
11 if q′ /∈ Q′ then
12 Add q′ as an unmarked state to Q′

13 δ′[q, f ] = q′

14 foreach q ∈ Q′ do
15 γ′[q] = {TypeOf(oi) | oi ∈ q }
16 Γ′ = Γ′ ∪ γ′[q]

17 return DFA = (Q′,Σ′, δ′, q′0,Γ
′, γ′)

case, all input symbols must be examined. In our case (lines 7 – 9), we only need

to iterate over the fields (input symbols) of an arbitrarily picked object (an NFA

state) in q to find its next states. Due to SingleType-Check in lines 6 – 7 of

Algorithm 1, the objects grouped in a DFA state q must have the same type. Fi-

nally, we need to compute Γ′ (set of output symbols) and γ′ (output map) at lines

14 – 16, which are absent in 5-tuple automata.

4.4.4 The Automata Equivalence Checker

Algorithm 4 (Equiv-Checker) tests the equivalence of two 6-tuple DFAs, by

applying a Hopcroft-Karp algorithm that was proposed for two 5-tuple DFAs [30]

with minor modifications at line 19 on the condition for testing the equivalence of

two DFAs. At line 19, two DFAs are equivalent if for each disjoint set s ∈ V , all



Chapter 4. Mahjong: Efficient Points-to Analysis by Merging
Equivalent Automata 71

Algorithm 4: Equiv-Checker

Input :
DFA1 = (Q1,Σ1, δ1, q1,Γ1, γ1)
DFA2 = (Q2,Σ2, δ2, q2,Γ2, γ2)

Output: TRUE or FALSE (Are DFA1 and DFA2 equivalent?)
1 Q = Q1 ∪ Q2

2 Σ = Σ1 ∪ Σ2

3 δ[q, f ] =

{
δ1[q, f ] if q ∈ Q1

δ2[q, f ] if q ∈ Q2

4 Γ = Γ1 ∪ Γ2

5 γ[q] =

{
γ1[q] if q ∈ Q1

γ2[q] if q ∈ Q2

6 DFA = (Q,Σ, δ, q1,Γ, γ)
7 Let V be a new set
8 foreach q ∈ Q do
9 Add {q} to V

10 V .Union(q1, q2)
11 Push (q1, q2) to a new stack, STACK
12 while STACK is not empty do
13 Pop (p1, p2) from STACK
14 foreach f ∈ Σ do
15 r1 =V.Find(δ[p1, f ]), r2 =V.Find(δ[p2, f ])
16 if r1 6= r2 then
17 V .Union(r1, r2)
18 Push (r1, r2) to STACK

19 return

{
TRUE if ∀s ∈ V : ∀p, q ∈ s : γ[p] = γ[q]

FALSE otherwise

objects in every state in s have the same type. As discussed in Section 4.2.2.2, a

5-tuple DFA can be modeled as a special case of a 6-tuple DFA.

Equiv-Checker iterates over all fields f ∈ Σ (line 14) and queries the transi-

tion map δ to obtain the next states (line 15). By convention, if δ[q, f ] is not defined,

since the objects in q do not have the field f , we assume that δ[q, f ] = qerror. In

addition, γ[qerror] returns a special type for qerror.
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4.4.5 The Heap Modeler

After Algorithm 1 has terminated, we have W = H / ≡ in its line 16. Then

MOM specifies the new heap abstraction given in Definition 2, as discussed in

Section 4.3.5.

4.5 Implementation

We have implemented Mahjong as a standalone tool in a total of only 1500

LOC in Java to build a new heap abstraction by merging equivalent automata.

Mahjong is designed to work with mainstream allocation-site-based points-to

analysis frameworks such as Doop [22], Soot [77], Chord [16] and Wala [98].

To demonstrate its effectiveness, we have integrated Mahjong with Doop [22], a

state-of-the-art whole-program points-to analysis framework for Java. Our en-

tire Mahjong framework has been released as open-source software at http:

//www.cse.unsw.edu.au/~corg/mahjong. Below we discuss three major opti-

mizations in our implementation.

Disjoint-Set Forest In Algorithms 1 and 4, disjoint sets are used. For efficiency,

we have implemented a set of disjoint sets as a disjoint-set forest, by representing

each disjoint set as a tree with its root being its representative. Thus, Union

amounts to linking the roots of different trees while Find returns the root of a

tree. To improve the efficiency further, we have also implemented two heuristics,

union by rank and path compression [17]. As a result, the average execution time

of each Union/Find operation over a disjoint-set forest can be reduced to nearly

O(1) [17].

http://www.cse.unsw.edu.au/~corg/mahjong
http://www.cse.unsw.edu.au/~corg/mahjong
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Shared Sequential Automata In Algorithms 2 and 3, new automata are fre-

quently created. However, different automata can be partly identical, since their

common parts correspond to the same objects. Instead of always creating new au-

tomata, we allow different automata to share their common parts. This optimiza-

tion reduces significantly both the time and space costs of the overall algorithm.

Parallel Type-Consistency Checks A synchronization-free parallelization

scheme is used. This is achieved by requiring different threads to merge objects of

different types (with every thread executing lines 6 – 13 of Algorithm 1). To avoid

synchronizations, object merging takes place only at line 13 of Algorithm 1, and in

addition, all shared automata are constructed before type-consistency checks and

concurrently read only during the checks.

4.6 Evaluation

We show that Mahjong is effective in significantly scaling context-sensitive points-

to analyses for large Java programs while achieving nearly the same precision for

type-dependent clients. We address two major research questions:

RQ1. Is Mahjong effective as a pre-analysis?

(a) Is Mahjong lightweight for large programs?

(b) Can Mahjong avoid the allocation-site abstraction’s heap over-partitioning

for type-dependent clients?

RQ2. Is Mahjong-based points-to analysis effective?

(a) Can Mahjong accelerate different types of mainstream context-sensitive

points-to analyses?
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(b) Can Mahjong achieve comparable precision as the allocation-site ab-

straction for type-dependent clients?

Context-Sensitive Points-to Analyses We consider five context-sensitive points-

to analyses from the Doop framework (version r160113) as baselines. These cover

the three main types of mainstream context-sensitivity, call-site-sensitivity [99, 39,

79, 23], object-sensitivity [53, 95, 76] and type-sensitivity [75].

Benchmarks We consider 12 large Java programs including 3 popular applica-

tions findbugs, checkstyle and JPC and all standard DaCapo benchmarks [8]

except jython and hsqldb as they are not scalable under 3 out of the 5 baseline

analyses with and without Mahjong. These programs are all analyzed with a

large Java library, JDK1.6.0 45.

As a static reflection analysis may affect both the efficiency and precision of

points-to analysis [41, 72], we adopt the same resolution results generated by a

dynamic reflection analysis tool, TamiFlex [13], in both the five baselines and

their corresponding Mahjong-based points-to analyses.

Type-Dependent Clients We consider three type-dependent clients, call graph

construction, devirtualization and may-fail casting, also provided by Doop [22].

Computing Platform We have done our experiments on a Xeon E5-1620 3.7GHz

machine with 128GB of RAM. The elapsed time of each analysis for each program

is the average of 3 runs.

Pre-Analysis For this, we use the fast context-insensitive points-to analysis,

denoted ci, provided by Doop [22]. Different pair-wise type-consistency tests are

performed in parallel, as discussed in Section 4.5, with 8 threads on 4 cores.
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Table 4.2 presents the main results, which will be analyzed when our research

questions are discussed below. For a program, we consider the abstract objects

reachable from main() in both the application and library code.

4.6.1 RQ1: Mahjong’s Effectiveness as a Pre-Analysis

4.6.1.1 Efficiency

The overall pre-analysis phase is fast, as shown in Column 2 of Table 4.2. For

a program, its analysis time is broken down into three components, taken by ci

(the context-insensitive points-to analysis), FPG (a module for building its FPG),

Mahjong (for creating a new heap abstraction). For all the 12 programs, the

average analysis time for ci is 62.3 seconds. The runtime overheads for the other

two are negligible.

The efficiency of Mahjong cannot be over-emphasized, as it could not other-

wise be used as an enabling technology for a subsequent points-to analysis. On

average, an FPG consists of 10073 objects of 1559 types with 2411 fields. This

costs Mahjong only an average of 3.8 seconds. Such good performance is due to

both our design (by merging objects in terms of merging equivalent automata) and

several effective optimizations performed (as described in Section 4.5).

4.6.1.2 Heap Partitioning

Figure 4.7 shows that Mahjong can alleviate the heap over-partitioning problem

suffered by the allocation-site abstraction effectively for type-dependent clients.

The allocation-site abstraction creates an average of 10073 objects per program,

ranging from 6190 in luindex to 19529 in eclipse. In contrast, Mahjong creates

an average of 3826 objects per program, ranging from 2108 in luindex to 9414 in

eclipse. This represents an average reduction of 62%.



Chapter 4. Mahjong: Efficient Points-to Analysis by Merging
Equivalent Automata 76

7729 
7159 

6190 

7363 
8106 

14337 

6523 

7807 

10888 11181 

14063 

19529 

2228 2474 2108 
2727 3107 

5285 

2229 
2942 

4028 4142 

5233 

9414 

0

5000

10000

15000

20000

Allocation-Site Abstraction

MAHJONG 

Figure 4.7: Number of abstract objects created by the allocation-site abstraction
and Mahjong.

Let us examine checkstyle in detail. As shown in Figure 4.7, a total of 10888

objects are created by the allocation-site abstraction but only 4028 objects by

Mahjong.
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Figure 4.8: Object merging in checkstyle.

Given the heap partitioned as H / ≡ for checkstyle, Figure 4.8 relates the

number of equivalence classes with a particular equivalence class size. In the left-

most point marked by (1, 3769), for example, there are 3769 equivalence classes
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containing one object each. Thus, neither object is merged with any other objects.

Equiv. Class Total No.
Rank Type

Size of Objects
Remarks

1 java.lang.StringBuilder 1303 1303 char[]

2 java.lang.Object[] 690 1353 String

12 antlr.ASTPair 108 109 DetailAST

55 java.lang.Object[] 12 1353 Integer

65 java.lang.Object[] 9 1353 QName

260 antlr.ASTPair 1 109 null

Table 4.1: Some equivalence classes in checkstyle.

Let us examine some equivalence classes, given in Table 4.1, with their ranks

(measured in decreasing order of their sizes) shown as well. For StringBuilder

(Row 1), all their objects are type-consistent (reaching only char[] objects along

any field access path) and thus merged. This is the largest equivalence class,

corresponding to the right-most point marked by (1303, 1) in Figure 4.8.

For some other types like Object[] (Rows 2, 4 and 5), blindly merging all

its objects would be imprecise (Section 4.2.1). In contrast, Mahjong merges only

type-consistent objects in order to maximally preserve precision for type-dependent

clients. Thus, Mahjong ends up with different equivalent classes containing ob-

jects of type Object[] for storing objects of different types, such as String (Row

2), Integer (Row 4), and QName (Row 5).

Finally, we show that Mahjong can also distinguish null from other objects,

because null may affect precision as explained in Section 4.3.6. Mahjong parti-

tions 109 objects of ASTPair into two equivalence classes, with one containing 108

objects whose fields point to objects of type DetailAST (Row 3) and the other that

contains one single object with null fields (Row 6).
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4.6.2 RQ2: Mahjong-based Points-to Analysis

Mainstream points-to analyses for Java programs rely on the allocation-site-based

abstraction to model the heap [38, 75, 39, 79, 34, 76, 95]. We demonstrate experi-

mentally that Mahjong is a better alternative for type-dependent clients.

Concretely, we show that Mahjong can achieve the following goal in the real

world. Suppose a software developer intends to apply a points-to analysis to a

program under a given time budget. Mahjong opens up new opportunities for

the developer to either accelerate the chosen points-to analysis or replace it with a

more precise but more expensive points-to analysis under still the same budget.

4.6.2.1 Baselines and Metrics

We consider three types of context-sensitive points-to analyses: call-site-sensitivity

(cs), object-sensitivity (obj ) and type-sensitivity (type). Specifically, five points-to

analyses in Doop [22] are selected as baselines: 2-cs (2-call-site-sensitive), 2-obj

(2-object-sensitive), 3-obj (3-object-sensitive), 2-type (2-type-sensitive), and 3-type

(3-type-sensitive). In principle, 2-cs is not compatible with the others, 3-A is no

less precise than 2-A, and k-obj is no less precise than k-type.

Currently, each baseline k-A uses the allocation-site abstraction. M-k-A de-

notes the version of k-A that uses the heap abstraction provided by Mahjong.

Thus, there are also five Mahjong-based points-to analyses altogether.

The three type-dependent clients, call graph construction, devirtualization and

may-fail casting, are widely used in the literature [39, 34, 76, 75, 95]. We consider

the following metrics: the number of call graph edges (#call graph edges), the

number of casting operations that may fail (#may-fail casts), and the number of

virtual call sites that cannot be disambiguated into mono-calls (#poly call sites).

The time budget for each analysis is set to 5 hours.
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4.6.2.2 Efficiency and Precision

Table 4.2 presents our results, showing clearly the effectiveness of Mahjong in

boosting existing points-to analyses while maintaining their precision for type-

dependent clients.

For each program, five metrics are considered: “analysis time”, “speedup”,

“#may-fail casts”, “#poly call sites” and “#call graph edges”. In all cases except

“speedup”, smaller is better. With “speedup” ignored, Table 4.2 contains 480

concrete results (= 4 metrics × 12 programs × 10 points-to analyses (including the

5 baselines and 5 Mahjong variants)).

In computing the speedup of M-k-A over k-A for a program, the pre-analysis

time on the program is ignored. There are three reasons: (1) the points-to infor-

mation produced by “ci” in Table 4.2 may already exist and can be reused, (2) the

pre-analysis time is relatively small (compared to the analysis time of a subsequent

M-k-A), and (3) the pre-analysis will be used to drive many points-to analyses.

Improved Efficiency Mahjong is versatile enough in accelerating all the five

points-to analyses with three different types of context-sensitivity. For every pro-

gram where k-A is scalable, M-k-A is also scalable and faster than k-A.

Mahjong is highly effective in boosting performance. For the programs where

both k-A and M-k-A are scalable, Mahjong achieves an average speedup of 15.4X

(ranging from 1.03X by M-2-obj /2-obj for bloat to 168.8X by M-3-obj /3-obj for

luindex). Table 4.2 divides visually the 12 programs into two groups. For the

top six, k-A scales whenever M-k-A scales. However, M-k-A is faster than k-

A, achieving an average speedup of 22.2X. This is especially significantly for the

most-precise configuration M-3-obj /3-obj. For every program in the bottom six,

Mahjong enables using a more precise points-to analysis that is not scalable if
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the allocation-site abstraction is used instead.

Preserved precision For every program, as shown in Table 4.2, Mahjong

achieves nearly the same precision for every client under every configuration M-

k-A/k-A. Thus, merging type-consistent objects can maximally preserve precision

as discussed in Section 4.3.6 and validated here.

Call-Site-Sensitivity M-2-cs is no more precise than 2-cs in principle (Sec-

tion 4.3.6) but nearly as precise in practice. For devirtualization, M-2-cs

is equally as precise as 2-cs. For may-fail casting, M-2-cs is negligibly worse

than 2-cs (with an average precision loss of 0.04%), by reporting only 5 more

may-fail casts each in checkstyle and findbugs. For call graph construction,

M-2-cs is also marginally worse (with an average precision loss of 0.006%),

by including only a few extra edges in pmd (3), chart (14), checkstyle (20),

and findbugs (17).

Object-Sensitivity M-k-obj is also no more precise than k-obj in principle (Sec-

tion 4.3.6) but nearly as precise in practice. For call graph construction,

devirtualization and may-fail casting, M-2-obj experiences a small loss of

precision of 0.02%, 0.23% and 0.04% over 2-obj, respectively, on average. For

M-3-obj over 3-obj, these percentages are 0.02%, 0.29% and 0.00%, respec-

tively. For may-fail casting, M-2-obj is on a par with 2-obj if checkstyle is

ignored, and M-3-obj is equally as precise as 3-obj.

Type-Sensitivity M-k-type may lose or even gain precision compared with k-type,

as discussed in Section 4.3.6 and illustrated by an example in Section 4.6.2.3.

For may-fail casting, M-k-type is slightly more precise than k-type in all the

programs except antlr. The average precision gains for M-2-type/2-type
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and M-3-type/3-type are 0.91% and 1.11%, respectively. For the other two

clients, M-k-type is slightly less precise than k-type in every program. For

call graph construction and devirtualization, M-2-type experiences a small

loss of precision of 0.02% and 0.18% over 2-type, respectively. In the case of

M-3-type/3-type, these percentages are 0.02% and 0.22%, respectively.

4.6.2.3 Discussion

We discuss three observations about some results in Table 4.2.

Speedups of M-3-obj over 3-obj Mahjong is most impressive in scaling

3-obj, the most precise baseline used. For the four programs, antlr, fop, luindex

and pmd, where 3-obj is scalable, M-3-obj is 131X faster, on average, while achieving

nearly the same precision for all the three clients. For the remaining eight, where

3-obj is unscalable, M-3-obj is scalable for checkstyle, xalan, lusearch, JPC and

fingbugs, by spending an average of 33.42 minutes only.

Why does M-3-obj /3-obj deliver significantly better speedups than M-2-obj /2-

obj ? By using one extra level of context elements than 2-obj, 3-obj often incurs an

exponential growth in the number of contexts used. By merging type-consistent

objects, which happen to be used as context elements at this extra level in 3-obj,

M-3-obj can drastically reduce the number of contexts used and thus accelerate the

analysis. Consider luindex, where the speedup achieved by M-3-obj /3-obj is the

highest obtained. The number of context-sensitive points-to relations produced

under 2-obj is 9255034 but grows to 191160483 under 3-obj, which are reduced

significantly to 4256310 under M-3-obj.

Precision Gains of M-k-type over k-type For simplicity, we explain this by

using an (abstract) example given in Figure 4.9.
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Class T
alloc site 1: 1OA // 1OA f

4O
X

2OA // 2OA f
5OY

Class U
3OA // 3OA f

6O
X

ktype: 

alloc site 2:

alloc site 3:

M-ktype: 
Alloc Sites 1 and 2 Abstracted, Resp., as:

 T and T  U and T if 1OA are merged as and 3OA 3OA

Figure 4.9: Precision gains of M-k-type over k-type.

In type-sensitivity [75], an allocation site i in a context is approximated by the

class that contains i. In this example, k-type will represent the allocation sites 1

and 2 by T in contexts. Thus, the two allocation sites that are distinguished by

k-obj are merged.

According to Mahjong, oA1 and oA3 are type-consistent, falling into the same

equivalence class. If oA3 happens to be selected as a representative, then M-k-type

will be able to distinguish the allocation sites 1 and 2 by U and T respectively, and

obtain better precision for this case.

Unscalability of Mahjong-based Points-to Analyses As shown in Table 4.2,

M-2-cs is unscalable for eclipse and M-3-obj is unscalable for bloat, chart and

eclipse. Why is M-3-obj scalable for some large programs such as findbugs but

unscalable for some small ones such as bloat? As shown in Figure 4.7, Mahjong

creates 5233 objects for findbugs but only 3107 objects for bloat.

M-3-obj is unscalable for bloat possibly due to its object structure used. Some

methods are both invoked on many (abstract) receiver objects and allocate many

objects. Thus, the number of contexts becomes extremely large. To alleviate this

problem, one solution is to use a coarser relation than ≡ given in Definition 1 so

that more objects can be merged together. Another solution is to apply 3-obj only

selectively to parts of the program when moving from 2-obj to 3-obj.
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4.7 Related Work

We review only the work most closely related to (whole-program) points-to analysis

for object-oriented programs.

Points-to Analysis Context-sensitivity is essential in achieving good efficiency

and precision trade-offs for Java programs [39, 40, 72, 80]. There are three main

flavors: call-site-sensitivity, object-sensitivity, and type-sensitivity.

Call-site-sensitivity [99, 39, 79, 23], i.e., k-CFA [71] is often used to analyze C

programs [105, 63, 9, 64]. To better exploit the object-oriented features in Java,

object-sensitivity is proposed [53, 55]. It distinguishes the calling contexts of a

method call in terms of the allocation sites of its receiver object rather than call-

sites (like what call-site-sensitivity does). Such design enables object-sensitivity to

yield significantly higher precision at usually less cost than call-site-sensitivity [95,

23, 39, 34]. However, for large Java programs like the findbugs and eclipse in our

experiment, object-sensitivity is hardly scalable despite its good precision. To trade

precision for efficiency, type-sensitivity is thus introduced [75]. It approximates the

allocation site i in the context of object-sensitivity by the type containing i, which

makes itself more scalable but less precise than object-sensitivity [34, 75, 95].

In this chapter, we have explained (Section 4.3.6) and demonstrated (Sec-

tion 4.6.2) the effectiveness of Mahjong on improving the efficiency of all the above

three main flavors of context-sensitivity: call-site-sensitivity, object-sensitivity and

type-sensitivity while preserving their precision for the type-critical clients. Hence,

for type-dependent clients, Mahjong represents a better alternative than the

allocation-site abstraction.

In addition, the benefit of Mahjong is expected to generalize to other vari-

ations of context-sensitivity [34, 95] as they build on existing context-sensitivity
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techniques. Specifically, Hybrid context-sensitive points-to analysis [34] applies

call-site-sensitivity to static call sites and object/type-sensitivity to virtual call

sites. More precise object-sensitive points-to analysis [95] is achieved by avoiding

automatically discovered redundant context elements which are useless in improv-

ing the precision.

There are other ways to improve the efficiency of points-to analysis. In [73], a

pre-analysis is performed to identify and eliminate the redundant statements which

will not affect the points-to facts in a flow-insensitive points-to analysis, if they are

removed. As a result, it is able to speedup a points-to analysis by giving it an input

program with less statements. This approach and Mahjong can be complementary

to each other. In [76], empirical heuristics are used to make efficiency and precision

trade-offs. As a result, some parts of the program are analyzed context-sensitively

and some other parts are analyzed context-insensitively. It estimates heuristically

which program elements’ cost is vastly disproportionate (under context-sensitivity)

and applies context-insensitivity to it. Such elements are estimated in a context-

insensitive pre-analysis by observing different heuristic parameters values such as

the cumulative size of points-to sets over all local variables in every method.

Heap Abstraction There are mainly two types of heap models in static anal-

ysis: store-based, e.g., the allocation-site abstraction and storeless, e.g., access

paths [32]. The former is usually adopted in points-to analysis and the latter in

alias analysis [72]. We focus on store-based models for Java below.

Due to its good precision, the allocation-site abstraction is adopted by (whole-

program) points-to analysis techniques in both the literature [38, 55, 79, 75, 34,

76, 95] and open-source tools, such as Doop [22], Soot [77], Chord [16] and

Wala [98]. To achieve better precision, the allocation-site abstraction is usually

further refined by the context-sensitive heap abstraction or heap cloning techniques
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[61, 39, 35, 102, 75, 88].

The allocation-type abstraction (with one abstract object per type) was used

earlier to resolve virtual calls [94, 67]. It is reasonably precise, compared with

0 -CFA [71] and CHA [20], which are fast but imprecise. Currently, points-to anal-

ysis no longer relies on the allocation-type abstraction to model the heap, as it is

imprecise [99, 32, 72].

Liang and Naik [45] introduce a sophisticated allocation-type-based abstraction

in a pre-pruning analysis to scale a subsequent refinement analysis to answer some

queries effectively. An allocation site h is represented by its dynamic type and

the type containing h. Unlike Mahjong, however, such an abstraction is still not

precise for points-to analysis.



Chapter 5

Conclusions and Future Work

In this chapter, we conclude the two points-to analysis techniques for Java presented

in this thesis, and then discuss some potential future work.

5.1 Conclusions

Points-to analysis, as a fundamental program analysis, is required by plenty of client

applications, such as bug detection, security analysis and compiler optimization,

as well as other program analyses, such as program slicing, reflection analysis and

escape analysis. A practically useful points-to analysis should make a good trade-

off between precision and efficiency. In this thesis, we introduce two techniques,

Bean and Mahjong, to improve the precision and efficiency of points-to analysis

for Java respectively without compromising the other much.

In Chapter 3, we have presented Bean to make points-to analysis more precise.

In the past decade, object-sensitivity has been recognized as an excellent context

abstraction for designing precise context-sensitive points-to analysis for Java and

thus adopted widely in practice. However, how to make a k-object-sensitive analysis

more precise becomes rather challenging. Simply increasing the limit of context

88
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length, k, is able to improve the precision but it will also cause a dramatic slowdown

in the analysis. We provide a general approach, Bean, to addressing this problem.

By reasoning about an object allocation graph (OAG) built based on a pre-analysis

on the program, we can identify and thus avoid redundant context elements (in

improving the precision) that are otherwise used in a traditional k-object-sensitive

analysis, thereby improving its precision at a small increase in cost.

In Chapter 4, we have presented Mahjong, a novel technique for abstracting

the heap for points-to analysis for object-oriented programs. By exploiting the

type-consistency property of (abstract) heap objects based on a pre-analysis on the

program, Mahjong merges the type-consistent objects which are distinguished in

the traditional allocation-site-based points-to analysis. As a result, Mahjong is

able to significantly accelerate existing points-to analyses while maximally preserv-

ing their precision for an important class of type-dependent clients, including call

graph construction. Mahjong is expected to provide significant benefits to many

program analyses, such as bug detection, security analysis, program verification

and program understanding, where call graphs are required.

5.2 Future Work

We have developed and presented Bean in Chapter 3, which improves the precision

of points-to analysis by removing redundant context elements from the contexts in

traditional object-sensitivity. However, the problem of redundant context elements

exists in not only object-sensitivity but also other forms of context-sensitivity,

such as call-site-sensitivity (k-CFA) and type-sensitivity. Their redundant context

elements can be identified and avoided in an OAG-like graph in a similar way.

The Mahjong framework that we have developed and introduced in Chapter 4
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opens up a number of research directions on providing suitable heap abstractions

for points-to analysis for large codebases and addressing their interplay. First, our

notion of type-consistency may be overly restrictive for some other clients and can

be relaxed. Second, as there are little benefits to analyze merged objects context-

sensitively for type-dependent clients, it may be worthwhile investigating how to

enforce selective context-sensitivity systematically by exploiting this insight. Third,

how do we adaptively refine a Mahjong-like heap abstraction to support demand

queries? Finally, it will be interesting to combine Mahjong and a storeless heap

abstraction to support points-to analysis.
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