
Making k-Object-Sensitive Pointer Analysis
More Precise with Still k-Limiting

Tian Tan1, Yue Li1, and Jingling Xue1,2

1 School of Computer Science and Engineering, UNSW Australia
2 Advanced Innovation Center for Imaging Technology, CNU, China

Abstract. Object-sensitivity is regarded as arguably the best context
abstraction for pointer analysis in object-oriented languages. However, a
k-object-sensitive pointer analysis, which uses a sequence of k allocation
sites (as k context elements) to represent a calling context of a method
call, may end up using some context elements redundantly without in-
ducing a finer partition of the space of (concrete) calling contexts for the
method call. In this paper, we introduce Bean, a general approach for
improving the precision of any k-object-sensitive analysis, denoted k-obj ,
by still using a k-limiting context abstraction. The novelty is to identify
allocation sites that are redundant context elements in k-obj from an
Object Allocation Graph (OAG), which is built based on a pre-analysis
(e.g., a context-insensitive Andersen’s analysis) performed initially on a
program and then avoid them in the subsequent k-object-sensitive anal-
ysis for the program. Bean is generally more precise than k-obj , with a
precision that is guaranteed to be as good as k-obj in the worst case. We
have implemented Bean as an open-source tool and applied it to refine
two state-of-the-art whole-program pointer analyses in Doop. For two
representative clients (may-alias and may-fail-cast) evaluated on a set of
nine large Java programs from the DaCapo benchmark suite, Bean has
succeeded in making both analyses more precise for all these benchmarks
under each client at only small increases in analysis cost.

1 Introduction

Pointer analysis, as an enabling technology, plays a key role in a wide range of
client applications, including bug detection [3, 25, 35, 34], security analysis [1, 13],
compiler optimisation [6, 33], and program understanding [12]. Two major di-
mensions of pointer analysis precision are flow-sensitivity and context-sensitivity.
For C/C++ programs, flow-sensitivity is needed by many clients [11, 16, 37, 32].
For object-oriented programs, e.g., Java programs, however, context-sensitivity
is known to deliver trackable and useful precision [17, 19–21, 28–30], in general.

There are two general approaches to achieving context-sensitivity for object-
oriented programs, call-site-sensitivity (k-CFA) [27] and object-sensitivity [23,
24, 29] (among others). A k-CFA analysis represents a calling context of a method
call by using a sequence of k call sites (i.e., k labels with each denoting a call
site). In contrast, a k-object-sensitive analysis uses k object allocation sites (i.e.,
k labels with each denoting a new statement) as context elements.

Among all the context abstractions (including k-CFA) proposed, object-
sensitivity is regarded as arguably the best for pointer analysis in object-oriented
languages [14, 17, 29]. This can be seen from its widespread adoption in a num-
ber of pointer analysis frameworks for Java, such as Doop [7, 4], Chord [5]
and Wala [36]. In addition, object-sensitivity has also been embraced by many
other program analysis tasks, including typestate verification [9, 38], data race
detection [25], information flow analysis [1, 10, 22], and program slicing [21].

Despite its success, a k-object-sensitive pointer analysis, which uses a se-
quence of k allocation sites (as k context elements) to represent a calling context
of a method call, may end up using some context elements redundantly in the
sense that these redundant context elements fail to induce a finer partition of
the space of (concrete) calling contexts for the method call. As a result, many
opportunities for making further precision improvements are missed.

In this paper, we introduce Bean, a general approach for improving the
precision of a k-object-sensitive pointer analysis, denoted k-obj , for Java, by
avoiding redundant context elements in k-obj while still maintaining a k-limiting
context abstraction. The novelty lies in identifying redundant context elements
by solving a graph problem on an OAG (Object Allocation Graph), which is
built based on a pre-analysis (e.g., a context-insensitive Andersen’s analysis)
performed initially on a program, and then avoid them in the subsequent k-
object-sensitive analysis. By construction, Bean is generally more precise than
k-obj , with a precision that is guaranteed to be as good as k-obj in the worst case.

We have implemented Bean and applied it to refine two state-of-the-art
(whole-program) pointer analyses, 2obj+h and S-2obj+h [14], provided in Doop
[7], resulting in two Bean-directed pointer analyses, B-2obj+h and B-S-2obj+h,
respectively. We have considered may-alias and may-fail-cast, two representative
clients used elsewhere [8, 29, 30] for measuring the precision of a pointer analysis
on a set of nine large Java programs from the DaCapo benchmark suite. Our re-
sults show that B-2obj+h (B-S-2obj+h) is more precise than 2obj+h (S-2obj+h)
for every evaluated benchmark under each client, at some small increases in
analysis cost.

This paper presents and validates a new idea on improving the precision of
object-sensitive pointer analysis by exploiting an object allocation graph. Con-
sidering the broad applications of object-sensitivity in analysing Java programs,
we expect more clients to benefit from the Bean approach, in practice. Specifi-
cally, this paper makes the following contributions:

– We introduce a new approach, Bean, for improving the precision of any k-
object-sensitive pointer analysis, k-obj , for Java, by avoiding its redundant
context elements while maintaining still a k-limiting context abstraction.

– We introduce a new kind of graph, called an OAG (object allocation graph),
constructed from a pre-analysis for the program, as a general mechanism to
identify redundant context elements used in k-obj .

– We have implemented Bean as a soon-to-be released open-source tool, which
is expected to work well with various object-sensitive analyses for Java.

– We have applied Bean to refine two state-of-the-art object-sensitive pointer
analyses for Java. Bean improves their precision for two representative
clients on a set of nine Java programs in DaCapo at small time increases.

2 Motivation

When analysing Java programs, there are two types of context, a method context
for local variables and a heap context for object fields. In k-obj , a k-object-
sensitive analysis [24, 29], a method context is a sequence of k allocation sites
and a heap context is typically a sequence of k − 1 allocation sites. Given an
allocation site at label `, ` is also referred to as an abstract object for the site.

Currently, k-obj , where k = 2, represents a 2-object-sensitive analysis with a
1-context-sensitive heap (with respect to allocation sites), denoted 2obj+h [14],
which usually achieves the best tradeoff between precision and scalability and
has thus been widely adopted in pointer analysis for Java [8, 21, 29]. In 2obj+h,
a heap context for an abstract object ` is a receiver object of the method that
made the allocation of ` (known as an allocator object). A method context for a
method call is a receiver object of the method plus its allocator object.

Below we examine the presence of redundant context elements in 2obj+h,
with two examples, one for method contexts and one for heap contexts. This
serves to motivate the Bean approach proposed for avoiding such redundancy.

2.1 Redundant Elements in Method Contexts

We use an example in Fig. 1 to illustrate how 2obj+h analyses it imprecisely due
to its use of a redundant context element in method contexts and how Bean
avoids the imprecision by avoiding this redundancy. We consider a may-alias
client that queries for the alias relation between variables v1 and v2.

In Fig. 1(a), we identify the six allocation sites by their labels given in their
end-of-line comments (in green), i.e., A/1, A/2, O/1, O/2, B/1, and C/1.

In Fig. 1(b), we give the context-sensitive call graph computed by 2obj+h,
where each method is analysed separately for each different calling context, de-
noted by [...] (in red). C.identify() has two concrete calling contexts but
analysed only once under [B/1,C/1]. We can see that B/1 is redundant (rela-
tive to C/1) since adding B/1 to [C/1] fails to separate the two concrete calling
contexts. As a result, variables v1 and v2 are made to point to both O/1 and
O/2 at the same time, causing may-alias to report a spurious alias. During any
program execution, v1 and v2 can only point to O/1 and O/2, respectively.

In Fig. 1(c), we give the context-sensitive call graph computed by Bean,
where C.identify() is now analysed separately under two different contexts,
[A/1, C/1] and [A/2, C/1]. Due to the improved precision, v1 (v2) now points
to O/1 (O/2) only, causing may-alias to conclude that both are no longer aliases.

�A/1�

main()

A.foo()

A.foo()

B.bar()

B.bar()

C.identity()

���

�A/2�

�A/1, B/1�

�A/2, B/1�

�B/1, C/1�

�A/1�

main()

A.foo()

A.foo()

B.bar()

B.bar()

���

�A/2�

�A/1, B/1�

�A/2, B/1�

C.identity()

�A/1, C/1�

C.identity()

�A/2, C/1�

(a)

(b)

(c)

Context-sensitive call graph by 2obj+h

Context-sensitive call graph by BEANProgram

1 void main(Object[] args) {
2 A a1 = new A(); // A/1
3 Object v1 = a1.foo(new Object()); // O/1
4
5 A a2 = new A(); // A/2
6 Object v2 = a2.foo(new Object()); // O/2
7 }
8 class A {
9 Object foo(Object v) {
10 B b = new B(); // B/1
11 return b.bar(v);
12 }
13 }
14 class B {
15 Object bar(Object v) {
16 C c = new C(); // C/1
17 return c.identity(v);
18 }
19 }
20 class C {
21 Object identity(Object v) { return v; }
22 }

Fig. 1: Method contexts for 2obj+h and Bean.

2.2 Redundant Elements in Heap Contexts

We now use an example in Fig. 2 to illustrate how 2obj+h analyses it imprecisely
due to its use of a redundant element in heap contexts and how Bean avoids
the imprecision by avoiding this redundancy. Our may-alias client now issues an
alias query for variables emp1 and emp2. In Fig. 2(a), we identify again its six
allocation sites by their labels given at their end-of-line comments (in green).

Fig. 2(b) shows the context-sensitive field points-to graph computed by 2obj+h,
where each node represents an abstract heap object created under the corre-
sponding context, denoted [...], (in red), and each edge represents a field points-
to relation with the corresponding field name being labeled on the edge. An array
object is analysed with its elements collapsed to one pseudo-field, denoted arr.
Hence, x[i] = y (y = x[i]) is handled as x.arr = y (y = x.arr).

In this example, two companies, Co/1 and Co/2, maintain their employee
information by using two different ArrayLists, with each implemented internally
by a distinct array of type Object[] at line 22. However, 2obj+h has modelled
the two array objects imprecisely by using one abstract object Obj[]/1 under
[AL/1]. Note that AL/1 is redundant since adding it to [] makes no difference to
the handling of Obj[]/1. As a result, emp1 and emp2 will both point to Emp/1

and Emp/2, causing may-alias to regard both as aliases conservatively.
Fig. 2(c) shows the context-sensitive field points-to graph computed by Bean.

This time, the Object[] arrays used by two companies Co/1 and Co/2 are dis-
tinguished under two distinct heap contexts [Co/1] and [Co/2]. As a result, our
may-alias client will no longer report emp1 and emp2 to be aliases.

2.3 Discussion

As illustrated above, k-obj selects blindly a sequence of k-most-recent allocation
sites as a context. To analyse large-scale software scalably, k is small, which is 2

Obj[]/1

�AL/1�

���

Co/1

�Co/1�
AL/1

emps

ele
ms

elems
Emp/1

1 void main(String[] args) {
2 Company comp1 = new Company(); // Co/1
3 comp1.addEmployee(new Employee()); // Emp/1
4 Employee emp1 = comp1.getEmployee(0);
5
6 Company comp2 = new Company(); // Co/2
7 comp2.addEmployee(new Employee()); // Emp/2
8 Employee emp2 = comp2.getEmployee(0);
9 }
10 class Employee {...}
11 class Company {
12 private ArrayList emps;
13 Company() { emps = new ArrayList(); } // AL/1
14 void addEmployee(Employee emp) { emps.add(emp); }
15 Employee getEmployee(int i) {
16 return (Employee) emps.get(i);
17 }
18 }
19 class ArrayList {
20 private Object[] elems;
21 private int size = 0;
22 ArrayList() { elems = new Object[10]; } // Obj[]/1
23 void add(Object e) { elems[size++] = e; }
24 Object get(int i) { return elems[i]; }
25 }

���

Co/2

�Co/2�
AL/1

emps
Emp/2

arr

ar
r

���

���

���

Co/1

�Co/1�
AL/1

emps

���

Co/2

�Co/2�
AL/1

emps

elems
Obj[]/1

elems
Obj[]/1

�Co/1�

�Co/2�

arr

arr

Emp/1

Emp/2

���

���

(b) Context-sensitive fields points-to
graph by 2obj+h

(c) Context-sensitive fields points-to
graph by BEAN(a) Program

Fig. 2: Heap contexts for 2obj+h and Bean.

for a method context and 1 for a heap context in 2obj+h. Therefore, redundant
context elements, such as B/1 in [B/1,C/1] in Fig. 1(b) and AL/1 in [AL/1] in
Fig. 2(b), should be avoided since they waste precious space in a context yet
contribute nothing in separating the concrete calling contexts for a call site.

This paper aims to address this problem in k-obj by excluding redundant
elements from its contexts so that their limited context positions can be more
profitably exploited to achieve better precision, as shown in Figs. 1(c) and 2(c).

3 Methodology

Points-To OAG
Construction

Pre-analysis

Context
Selection

Selected

Set

Contexts

k-object-sensitive
 pointer analysis

(k-obj)

Fig. 3: Overview of Bean.

We introduce a new approach, Bean,
as illustrated in Fig. 3, to improving
the precision of a k-object-sensitive
pointer analysis, k-obj . The basic idea
is to refine k-obj by avoiding its re-
dundant context elements while main-
taining still a k-limiting context ab-
straction. An element e in a context
c for a call or allocation site is redun-
dant if c with e removed does not change the context represented by c. For
example, B/1 in [B/1,C/1] in Fig. 1(b) and AL/1 in [AL/1] in Fig. 2(b) are re-
dundant.

Bean proceeds in two stages. In Stage 1, we aim to identify redundant con-
text elements used in k-obj . To do so, we first perform usually a fast but im-
precise pre-analysis, e.g., a context-insensitive Andersen’s pointer analysis on a
program to obtain its points-to information. Based on the points-to information

discovered, we construct an object allocation graph (OAG) to capture the ob-
ject allocation relations in k-obj . Subsequently, we traverse the OAG to select
method and heap contexts by avoiding redundant context elements that would
otherwise be used by k-obj . In Stage 2, we refine k-obj by avoiding its redun-
dant context elements. Essentially, we perform a k-object-sensitive analysis in
the normal way, by using the contexts selected in the first stage, instead.

3.1 Object Allocation Graph

The OAG of a program is a directed graph, G = (N,E). A node ` ∈ N represents
a label of an (object) allocation site in the program. An edge `1 → `2 ∈ E
represents an object allocation relation. As G is context-insensitive, a label ` ∈ G
is also interchangeably referred to (in the literature) as the (unique) abstract
heap object that models all the concrete objects created at the allocation site `.
Given this, `1 → `2 signifies that `1 is the the receiver object of the method that
made the allocation of `2. Therefore, `1 is called an allocator object of `2 [29].

O

A/1

root

A/2

B/1

C/1

O/1

O/2

O

Co/1

root

Co/2

AL/1

Obj[]/1

Emp/1

Emp/2

O

O1

root

O2

O3

O4

O5

O6

(a) Fig. 1 (b) Fig. 2 (c) Example 2

Fig. 4: The OAGs for the two motivating programs in Figs. 1 and 2.

Figure 4 gives the OAGs for the two programs in Figs. 1 and 2, which are de-
liberately designed to be isomorphic. In Fig. 4(a), A/1 and A/2 are two allocators
of B/1. In Fig. 4(b), AL/1 is an allocator of Obj[]/1. Some objects, e.g., those
created in main() or static initialisers, have no allocators. For convenience, we
assume the existence of a dummy node, Oroot, so that every object has at least
one allocator. The isomorphic OAG in Fig. 4(c) will be referred to in Example 2.

The concept of allocator object captures the essence of object sensitivity. By
definition [24, 29], a context for an allocation site `, i.e., an abstract object `
consists of its allocator object (`′), the allocator object of `′, and so on. The
OAG provides a new perspective for object sensitivity, since a context for an
object ` is simply a path from Oroot to `. As a result, the problem of selecting
contexts for ` can be recast as one of solving a problem of distinguishing different
paths from Oroot to `. Traditionally, a k-object-sensitive analysis selects blindly
a suffix of a path from Oroot to ` with length k.

3.2 Context Selection

Given an object ` in G, Bean selects its contexts in G as sequences of its direct
or indirect allocators that are useful to distinguish different paths from Oroot
to ` while avoiding redundant ones that would otherwise be used in k-obj . The
key insight is that in many cases, it is unnecessary to use all nodes of a path to
distinguish the path from the other paths leading to the same node. In contrast,
k-obj is not equipped with G and thus has to select blindly a suffix of each such
path as a context, resulting in many redundant context elements being used.

Method Contexts Figure 1 compares the method contexts used by 2obj+h
and Bean for the first example given. As shown in Figure 1(b), 2obj+h analyses
C.identity() under one context [B/1,C/1], where B/1 is redundant, without
being able to separate its two concrete calling contexts. In contrast, Bean avoids
using B/1 by examining the OAG of this example in Fig. 4(a). There are two
paths from Oroot to C/1: Oroot → A/1 → B/1 → C/1 and Oroot → A/2 → B/1 →
C/1. Note that 2obj+h has selected a suffix of the two paths, B/1→ C/1, which
happens to represent the same context [B/1,C/1] for C.identity(). Bean dis-
tinguishes these two paths by ignoring the redundant node B/1, thereby settling
with the method contexts shown in Figure 1(c). As a result, C.identity() is now
analysed under two different contexts [A/1,C/1] and [A/2,C/1] more precisely.

Heap Contexts Figure 2 compares the heap contexts used by 2obj+h and
Bean for the second example given. As shown in Figure 2(b), 2obj+h fails to
separate the two array objects created at the allocation site Obj[]/1 for two
companies Co/1 and Co/2 by using one context [AL/1], where AL/1 is redundant.
In contrast, Bean avoids using AL/1 by examining the OAG of this example
in Fig. 4(b). There are two paths from Oroot to Obj[]/1: Oroot → Co/1 →
AL/1 → Obj[]/1 and Oroot → Co/2 → AL/1 → Obj[]/1. Note that 2obj+h has
selected a suffix of the two paths, AL/1→ Obj[]/1, which happens to represent
the same heap context [AL/1] for Obj[]/1. Bean distinguishes these two paths
by ignoring the redundant node AL/1, thereby settling with the heap contexts
shown in Figure 2(c). As a result, the two array objects created at Obj[]/1 are
distinguished under two different contexts [Co/1] and [Co/2] more precisely.

3.3 Discussion

Bean, as shown in Fig. 3, is designed to be a general-purpose technique for
refining k-obj with three design goals, under the condition that its pre-analysis
is sound. First, as the pre-analysis is usually less precise than k-obj , the OAG
constructed for the program may contain some object allocation relations that
are not visible in k-obj . Therefore, Bean is not expected to be optimal in the
sense that it can avoid all redundant context elements in k-obj . Second, if the
pre-analysis is more precise than k-obj (e.g., in some parts of the program), then
the OAG may miss some object allocation relations that are visible in k-obj . This
allows Bean to avoid using context elements that are redundant with respect to
the pre-analysis but not k-obj , making the resulting analysis even more precise.

Finally, Bean is expected to be more precise than k-obj in general, with a
precision that is guaranteed to be as good as k-obj in the worst case.

4 Formalism

Without loss of generality, we formalise Bean as a k-object-sensitive pointer
analysis with a (k − 1)-context-sensitive heap (with respect to allocation sites),
as in [14]. Thus, the depth of its method (heap) contexts is k (k − 1).

4.1 Notations

variable x, y ∈ V
heap object oi, oj ∈ H

method m ∈M
field f ∈ F

context c ∈ C = H0 ∪H1 ∪H2...

pt : C× V→ P(C×H)
fpt : C×H× F→ P(C×H)

mtdCtxSelector : C×H→ C
heapCtxSelector : C×H→ C

contextsOf : M→ P(C)

OAG G = (N,E)
node oi, oj ∈ N ⊆ H
edge oi → oj ∈ E ⊆ N ×N

Fig. 5: Notations.

We will use the notations in Fig. 5. The
top section lists the domains used. As we
focus on object-sensitive analysis, a con-
text is a sequence of objects. The mid-
dle section gives the five key relations
used. pt and fpt store the analysis results:
pt(c, x) represents the points-to set of vari-
able x under context c and fpt(c, oi, f)
represents the points-to set of the field
f of an abstract object oi under con-
text c. mtdCtxSelector and heapCtxSelector
choose the method contexts for method
calls and heap contexts for allocation sites,
respectively. contextsOf maps a method to
its contexts. The last section defines the OAG used for a program: oi → oj means
that oi is an allocator object of oj , i.e., the receiver object of the method that
made the allocation of oj .

4.2 Object Allocation Graph

Figure 6 gives the rules for building the OAG, G = (N,E), for a program,
based on the points-to sets computed by a pre-analysis, which may or may
not be context-sensitive. As G is (currently) context-insensitive, the context
information that appears in a points-to set (if any) is simply ignored. [OAG-Node]

and [OAG-DummyNode] build N . [OAG-Edge] and [OAG-DummyEdge] build E.
By [OAG-Node], we add to N all the pointed-to target objects found during

the pre-analysis. By [OAG-DummyNode], we add a dummy node oroot to N .
By [OAG-Edge], we add to E an edge oi → oj if oi is an allocator object of oj .

Here, mthis, where m is the name of a method, represents the this variable of
method m, which points to the receiver object of method m. By [OAG-DummyEdge],
we add an edge from oroot to every object oi without any incoming edge yet, to
indicate that oroot is now a pseudo allocator object of oi. Note that an object
allocated in main() or a static initialiser does not have an allocator object. Due
to oroot, every object has at least one allocator object.

〈 , oi〉 ∈ pt(,)

oi ∈ N
[OAG-Node]

oroot ∈ N
[OAG-DummyNode]

〈 , oi〉 ∈ pt(,mthis) m ∈ M oj is allocated in m

oi → oj ∈ E
[OAG-Edge]

oi ∈ N oi 6= oroot oi does not have any incoming edge

oroot → oi ∈ E
[OAG-DummyEdge]

Fig. 6: Rules for building the OAG, G = (N,E), for a program based on a pre-analysis.

Example 1. Figure 4 gives the OAGs for the two programs in Figs. 1 and 2. For
reasons of symmetry, let us apply the rules in Fig. 6 to build the OAG in Fig. 4(a)
only. Suppose we perform a context-insensitive Andersen’s pointer analysis as the
pre-analysis on the program in Fig. 1. The points-to sets are: pt(v1) = pt(v2) =
{O/1, O/2}, pt(a1) = {A/1}, pt(a2) = {A/2}, pt(b) = {B/1}, and pt(c) =
{C/1}. By [OAG-Node] and [OAG-DummyNode], N = {oroot, A/1, A/2, B/1, C/1, O/1,
O/2}. By [OAG-Edge], we add A/1 → B/1, A/2 → B/1 and B/1 → C/1, since
B/1 is allocated in foo() with the receiver objects being A/1 and A/2 and C/1

is allocated in bar() on the receiver object B/1. By [OAG-DummyEdge], we add
oroot → A/1, oroot → A/2, oroot → O/1 and oroot → O/2. ut

Due to recursion, an OAG may have cycles including self-loops. This means
that an abstract heap object may be a direct or indirect allocator object of
another heap object, and conversely (with both being possibly the same).

4.3 Context Selection

Figure 7 establishes some basic relations in an OAG, G = (N,E), with possibly
cycles. By [Reach-Reflexive] and [Reach-Transitive], we speak of graph reachability
in the standard manner. In [Confluence], goi identifies a conventional confluence
point. In [Divergence], oi ≺ ot states that oi is a divergence point, with at least
two outgoing paths reaching ot, implying that either ot is a confluence point or
at least one confluence point exists earlier on the two paths.

oi ∈ N

oi oi
[Reach-Reflexive]

oi → oj ∈ E oj ok

oi ok
[Reach-Transitive]

oj → oi ∈ E ok → oi ∈ E oj 6= ok

goi
[Confluence]

oi → oj ∈ E oi → ok ∈ E oj 6= ok oj ot ok ot

oi≺ot
[Divergence]

Fig. 7: Rules for basic relations in an OAG, G = (N,E).

ot ∈ N oroot → oi ∈ E oi ot

oti : 〈oroot≺ot, []〉 if oi = ot then heapCtxSelector([], oi) = []
[Hctx-Init]

otj :〈rep, c〉 oj → oi ∈ E oi ot oj 6= ot

oti :〈rep′, c′〉


rep′ = true, c′ = c if ¬rep ∧ oj≺ot 1
rep′ = oj≺ot, c

′ = c ++ oj if rep ∧ goi 2
rep′ = rep, c′ = c otherwise

if oi = ot then heapCtxSelector(c ++ oj , oi) = c′

[Hctx-Div]

otj :〈rep, c〉 oj → oi ∈ E oi ot oj = ot

oti :〈rep′, c′〉
{

rep′ = true, c′ = c ++ oj , if rep ∧ goi 3
rep′ = true, c′ = c, otherwise

if oi = ot then heapCtxSelector(c ++ oj , oi) = c′

[Hctx-Cyc]

heapCtxSelector(, oi) = c c′ = c ++ oi

mtdCtxSelector(c, oi) = c′
[Mctx]

Fig. 8: Rules for context selection in an OAG, G=(N,E). ++ is a concatenation operator.

Figure 8 gives the rules for computing two context selectors, heapCtxSelector
and mtdCtxSelector, used in refining an object-sensitive pointer analysis in Fig. 11.
In heapCtxSelector(c, oi) = c′, c denotes an (abstract calling) context of the
method that made the allocation of object oi and c′ is the heap context selected
for oi when oi is allocated in the method with context c. In mtdCtxSelector(c, oi) =
c′, c denotes a heap context of object oi, and c′ is the method context selected
for the method whose receiver object is oi under its heap context c.

For k-obj [24, 29], both context selectors are simple. In the case of full-
object-sensitivity, we have heapCtxSelector([o1, ..., on−1], on) = [o1, ..., on−1] and
mtdCtxSelector([o1, ..., on−1], on) = [o1, ..., on] for every path from oroot to a node
on in the OAG, oroot → o1 → ... → on−1 → on. For a k-object-sensitive analy-
sis with a (k− 1)-context-sensitive heap, heapCtxSelector([on−k, ..., on−1], on) =
[on−k+1, ..., on−1] and mtdCtxSelector([on−k+1, ..., on−1], on) = [on−k+1, ..., on].

1
2

3 4

5

Ot

Oroot

Fig. 9: An OAG.

Essentially, a suffix of length of k is selected from oroot → o1 →
... → on−1 → on, resulting in potentially many redundant
context elements to be used blindly.

Let us first use an OAG in Fig. 9 to explain how we avoid
redundant context elements selected by k-obj . The set of con-
texts for a given node, denoted ot, can be seen as the set of
paths reaching ot from oroot. Instead of using all the nodes on
a path to distinguish it from the other four, we use only the
five representative nodes, labeled by 1 – 5, and identify the five
paths uniquely as 1 → 3 , 1 → 4 , 2 → 3 , 2 → 4 , and
5 . The other six nodes are redundant with respect to ot. The
rules in Fig. 8 are used to identify such representative nodes

(on the paths from a divergence node to a confluence node) and compute the
set of contexts for ot.

In Fig. 8, the first three rules select heap contexts and the last rule selects
method contexts based on the heap contexts selected. The first three rules tra-
verse the OAG from oroot and select heap contexts for a node ot. Meanwhile, each
rule also records at oi, which reaches ot, a set of pairs of the form oti : 〈rep, c〉. For
a pair oti : 〈rep, c〉, c is a heap context of oi that uniquely represents a particular
path from oroot to oi. In addition, rep is a boolean flag considered for deter-
mining the suitability of oi as a representative node, i.e., context element for ot
under c (i.e., for the path c leading to oi). There are two cases. If rep = false,
then oi is redundant for ot. If rep = true, then oi is potentially a representative
node (i.e., context element) for ot. c ++ o returns the concatenation of c and o.

Specifically, for the first three rules on heap contexts, [Hctx-Init] bootstraps
heap context selection, [Hctx-Cyc] handles the special case when ot is in a cy-
cle such that oj = ot, and [Hctx-Div] handles the remaining cases. In [Mctx], the
contexts for a method are selected based on its receiver objects and the heap con-
texts of these receiver objects computed by the first three rules. Thus, removing
redundant elements from heap contexts benefits method contexts directly.

oj
<false, c>

<true, c>

<true, c>

<false, c oj>++

<true, c>

1
Oj Ot false= Oj Ot true=

<true, c oj>++

<true, c>

<true, c oj>++

oi

ot

oj

oi

ot

oj

oi

ot

ok oj

oi

[HCTX-DIV] [HCTX-DIV] 2 [HCTX-CYC] 3

ot oj =

Fig. 10: Three Cases marked for [Hctx-Div] and [Hctx-Cyc] in Fig. 8.

Figure 10 illustrates the four non-trivial cases marked in Fig. 8, i.e., 1 , 2
(split into two sub-cases), and 3 . In 1 , oi appears on a divergent path from oj
leading to ot, o

t
i’s rep′ is set to true to mark oi as a potential context element

for ot. In 2 , there are two sub-cases: ¬oj≺ot and oj≺ot. In both cases, oj is in
a branch (since otj ’s rep is true) and oi is a confluence node (since goi holds).
Thus, oj is included as a context element for ot. In the case of ¬oj ≺ ot, oi is
redundant for ot under c. In the case of oj ≺ ot, the paths to ot diverge at oj .
Thus, oi can be potentially a context element to distinguish the paths from oj
to ot via oi. If oi is ignored, the two paths oj→ ok→ ot and oj→oi→ ok→ ot as
shown cannot be distinguished. In [Hctx-Cyc], its two cases are identically handled
as the last two cases in [Hctx-Cyc], except that [Hctx-Cyc] always sets oti’s rep′ to
true. If [Hctx-Cyc] is applicable, ot must appear in a cycle such that oj = ot.
Then, any successor of ot may be a representative node to be used to distinguish
the paths leading to ot via the cycle. Thus, oti’s rep′ is set to true. The first case
in [Hctx-Cyc], marked as 3 in Fig. 8, is illustrated in Fig. 10.

To enforce k-limiting in the rules given in Fig 8, we simply make every method
context c ++ oi k-bounded and every heap context c ++ oj (k − 1)-bounded.

Example 2. For the two programs illustrated in Figs. 1 and 2, Bean is more
precise than 2obj+h (with k = 2) in handling the method and heap contexts
of o4, shown in their isomorphic OAG in Fig. 4(c). We give some relevant
derivations for oti, with t = 4, only. By [Hctx-Init], we obtain o41 : (true, [])
and o42 : (true, []). By [Hctx-Div], we obtain o43 : (false, [o1]), o43 : (false, [o2]),
o44 : (false, [o1]) and o44 : (false, [o2]). Thus, heapCtxSelector([o1,o3], o4) = [o1]
and heapCtxSelector([o2,o3], o4) = [o2]. By [Mctx], mtdCtxSelector([o1], o4) =
[o1,o4], and mtdCtxSelector([o2], o4) = [o2,o4]. For 2obj+h, the contexts se-
lected for o4 are heapCtxSelector([o1,o3], o4) = [o3], heapCtxSelector([o2,o3],
o4) = [o3] and mtdCtxSelector([o3], o4) = [o3,o4]. As result, Bean can suc-
cessfully separate the two concrete calling contexts for o4 and the two o4 objects
created in the two contexts but 2obj+h fails to do this. ut

4.4 Object-Sensitive Pointer Analysis

Figure 11 gives a formulation of a k-object-sensitive pointer analysis that selects
its contexts in terms of mtdCtxSelector and heapCtxSelector to avoid redundant
context elements that would otherwise be used in k-obj . In addition to this
fundamental difference, all the rules are standard, as expected.

In [New], oi identifies uniquely the abstract object created as an instance of
T at allocation site i. In [Assign], a copy assignment between two local variables
is dealt with. In [Load] and [Store], object field accesses are handled.

In [Call], the function dispatch(oi, g) is used to resolve the virtual dispatch of
method g on the receiver object oi to be method m′. As in Fig. 6, we continue
to use m′this to represent the this variable of method m′. Following [31], we
assume that m′ has the k formal parameters m′p1, ...,m

′
pk other than m′this and

that a pseudo-variable m′ret is used to hold the return value of m′.
Compared to k-obj , Bean avoids its redundant context elements in [New] and

[Call]. In [New], heapCtxSelector (by [Hctx-Init], [Hctx-Div] and [Hctx-Cyc]) is used to
select the contexts for object allocation. In [Call], mtdCtxSelector (by [Mctx]) is
used to select the contexts for method invocation.

4.5 Properties

Theorem 1. Under full-context-sensitivity (i.e., when k = ∞), Bean is as
precise as the traditional k-object-sensitive pointer analysis (k-obj).

Proof Sketch. The set of contexts for any given abstract object, say ot, is the set
Pt of its paths reaching ot from oroot in the OAG of the program. Let Rt be the
set of representative nodes, i.e., context elements identified by Bean for ot. We
argue that Rt is sufficient to distinguish all the paths in Pt (as shown in Fig. 9).

For the four rules given in Fig. 8, we only need to consider the first three for
selecting heap contexts as the last one for method contexts depends on the first
three. [Hctx-Init] performs the initialisation for the successor nodes of oroot.

m: the containing method for each statement being analysed

i : x = new T () c ∈ contextsOf(m) c′ = heapCtxSelector(c, oi)

〈c′, oi〉 ∈ pt(c, x)
[New]

x = y c ∈ contextsOf(m)

pt(c, y) ⊆ pt(c, x)
[Assign]

x = y.f c ∈ contextsOf(m) 〈c′, oi〉 ∈ pt(c, y)

fpt(c′, oi, f) ⊆ pt(c, x)
[Load]

x.f = y c ∈ contextsOf(m) 〈c′, oi〉 ∈ pt(c, x)

pt(c, y) ⊆ fpt(c′, oi, f)
[Store]

x = y.g(arg1, ..., argn) c ∈ contextsOf(m) 〈c′, oi〉 ∈ pt(c, y)
m′ = dispatch(oi, g) c′′ = mtdCtxSelector(c′, oi)

c′′ ∈ contextsOf(m′) 〈c′, oi〉 ∈ pt(c′′,m′
this)

∀ 1 ≤ k ≤ n : pt(c, argk) ⊆ pt(c′′,m′
pk) pt(c′′,m′

ret) ⊆ pt(c, x)

[Call]

Fig. 11: Rules for pointer analysis.

[Hctx-Div] handles all the situations except the special one when ot is in a
cycle such that ot = oj . [Hctx-Div] has three cases. In the first case, marked 1
(Fig. 10), our graph reachability analysis concludes conservatively whether it
has processed a divergence node or not during the graph traversal. In the second
case, marked 2 (Fig. 10), oi is a confluence node. By adding oj to c in c ++ oj ,
we ensure that for each path p from oi’s corresponding divergence node to oi
traversed earlier, at least one representative node that is able to represent p, i.e.,
oj , is always selected, i.e., to Rt. In cases 1 and 2 , as all the paths from oroot
to ot are traversed, all divergence and confluence nodes are handled. The third
case simply propagates the recorded information across the edge oj → oi.

[Hctx-Cyc] applies only when ot is in a cycle such that ot = oj . Its two cases
are identical to the last two cases in [Hctx-Div] except oti’s rep′ is always set to
true. This ensures all the paths via the cycle can be distinguished correctly. In
the case, marked 3 and illustrated in Fig. 10, oj is selected, i.e., added to Rt.

Thus, Rt is sufficient to distinguish the paths in Pt. Hence, the theorem. ut

Theorem 2. For any fixed context depth k, Bean is as precise as the traditional
k-object-sensitive pointer analysis (k-obj) in the worst case.

Proof Sketch. This follows from the fact that, for a fixed k, based on Theorem 1,
Bean will eliminate some redundant context elements in a sequence of k-most-
recent allocation sites in general or nothing at all in the worst case. Thus, Bean
may be more precise than (by distinguishing more contexts for a call or allocation
site) or has the same precision as k-obj (by using the same contexts). ut

5 Evaluation

We have implemented Bean as a standalone tool for performing OAG con-
struction (Fig. 6) and context selection (Fig. 8), as shown in Fig. 3, in Java.
To demonstrate the relevance of Bean to pointer analysis, we have integrated
Bean with Doop [7], a state-of-the-art context-sensitive pointer analysis frame-
work for Java. In our experiments, the pre-analysis for a program is performed
by using a context-insensitive Andersen’s pointer analysis provided in Doop.
To apply Bean to refine an existing object-sensitive analysis written in Datalog
from Doop, it is only necessary to modify some Datalog rules in Doop to adopt
the contexts selected by heapCtxSelector and mtdCtxSelector in Bean (Fig. 8).

Our entire Bean framework will be released as open-source software at
http://www.cse.unsw.edu.au/∼corg/bean.

In our evaluation, we attempt to answer the following two research questions:

RQ1. Can Bean improve the precision of an object-sensitive pointer analysis at
slightly increased cost to enable a client to answer its queries more precisely?

RQ2. Does Bean make any difference for a real-world application?

To address RQ1, we apply Bean to refine two state-of-the-art whole-program
object-sensitive pointer analyses, 2obj+h and S-2obj+h, the top two most precise
yet scalable solutions provided in Doop [7, 14], resulting in two Bean-directed
analyses, B-2obj+h and B-S-2obj+h, respectively. Altogether, we will compare
the following five context-sensitive pointer analyses:

– 2cs+h: 2-call-site-sensitive analysis [7]

– 2obj+h: 2-object-sensitive analysis with 1-context-sensitive heap [7]

– B-2obj+h: the Bean-directed version of 2obj+h

– S-2obj+h: selective hybrids of 2 object-sensitive analysis proposed in [7, 14]

– B-S-2obj+h: the Bean-directed version of S-2obj+h

Note that 2obj+h is discussed in Section 2. S-2obj+h is a selective 2-object-
sensitive with 1-context-sensitive heap hybrid analysis [14], which applies call-
site-sensitivity to static call sites and 2obj+h to virtual call sites. For S-2obj+h,
Bean proceeds by refining its object-sensitive part of the analysis, demonstrating
its generality in improving the precision of both pure and hybrid object-sensitive
analyses. For comparison purposes, we have included 2cs+h to demonstrate the
superiority of object-sensitivity over call-site-sensitivity.

We have considered may-alias and may-fail-cast, two representative clients
used elsewhere [8, 29, 30] for measuring the precision of pointer analysis. The
may-alias client queries whether two variables may point to the same object or
not. The may-fail-cast client identifies the type casts that may fail at run time.

To address RQ2, we show how Bean can enable may-alias and may-fail-cast
to answer alias queries more precisely for java.util.HashSet. This container
from the Java library is extensively used in real-world Java applications.

5.1 Experimental Setting

All the five pointer analyses evaluated are written in terms of Datalog rules
in the Doop framework [4]. Our evaluation setting uses the LogicBlox Datalog
engine (v3.9.0), on an Xeon E5-2650 2GHz machine with 64GB of RAM.

We use all the Java programs in the DaCapo benchmark suite (2006-10-
MR2) [2] except hsqldb and jython, because all the four object-sensitive anal-
yses, cannot finish analysing each of the two in a time budget of 5 hours. All
these benchmarks are analysed together with a large Java library, JDK 1.6.0 45.

Doop handles native code (in terms of summaries) and (explicit and implicit)
exceptions [4]. As for reflection, we leverage Solar [20] by adopting its string
inference to resolve reflective calls but turning off its other inference mechanisms
that may require manual annotations. We have also enabled Doop to merge
some objects, e.g., reflection-irrelevant string constants, in order to speed up
each analysis without affecting its precision noticeably, as in [7, 14].

When analysing a program, by either a pre-analysis or any of the five pointer
analyses evaluated, its native code, exceptions and reflective code are all handled
in exactly the same way. Even if some parts of the program are unanalysed, we
can still speak of the soundness of all these analyses with respect to the part of
the program visible to the pre-analysis. Thus, Theorems 1 and 2 still hold.

5.2 RQ1: Precision and Performance Measurements

Table 1 compare the precision and performance results for the five analyses.

Precision We measure the precision of a pointer analysis in term of the number
of may-alias variable pairs reported by may-alias and the number of may-fail-
casts reported by may-fail-cast . For the may-alias client, the obvious aliases
(e.g., due to a direct assignment) have been filtered out, following [8]. The more
precise a pointer analysis is, the smaller these two numbers will be.

Let us consider may-alias first. B-2obj+h improves the precision of 2obj+h
for all the nine benchmarks, ranging from 6.2% for antlr to 16.9% for xalan,
with an average of 10.0%. In addition, B-S-2obj+h is also more precise than
S-2obj+h for all the nine benchmarks, ranging from 3.7% for antlr to 30.0% for
xalan, with an average of 8.8%. Note that the set of non-aliased variable pairs
reported under 2obj+h (S-2obj+h) is a strict subset of the set of non-aliased
variable pairs reported under B-2obj+h (B-S-2obj+h), validating practically the
validity of Theorem 2, i.e., the fact that Bean is always no less precise than the
object-sensitive analysis improved upon. Finally, 2obj+h, S-2obj+h, B-2obj+h
and B-S-2obj+h are all substantially more precise than 2cs+h, indicating the
superiority of object-sensitivity over call-site-sensitivity.

Let us now move to may-fail-cast . Again, B-2obj+h improves the precision
of 2obj+h for all the nine benchmarks, ranging from 5.4% for fop to 11.2% for
luindex, with an average of 8.4%. In addition, B-S-2obj+h is also more precise
than S-2obj+h for all the nine benchmarks, ranging from 6.7% for fop to 15.6%
for luindex, with an average of 10.8%. Note that the casts that are shown to

Table 1: Precision and performance results for all the five analyses. The two precision
metrics shown are the number of variable pairs that may be aliases generated by may-
alias (“may-alias pairs”) and the number of casts that cannot be statically proved
to be safe by may-fail-cast (“may-fail casts”). In both cases, smaller is better. One
performance metric used is the analysis time for a program.

2cs+h 2obj+h B-2obj+h S-2obj+h B-S-2obj+h

xalan

may-alias pairs 25,245,307 6,196,945 5,146,694 5,652,610 3,958,998

may-fail casts 1154 711 653 608 550

analysis time (secs) 1400 8653 11450 1150 1376

chart

may-alias pairs 43,124,320 4,189,805 3,593,584 3,485,082 3,117,825

may-fail casts 2026 1064 979 923 844

analysis time (secs) 3682 630 1322 1145 1814

eclipse

may-alias pairs 20,979,544 5,029,492 4,617,883 4,636,675 4,346,306

may-fail casts 1096 722 655 615 551

analysis time (secs) 1076 119 175 119 188

fop

may-alias pairs 38,496,078 10,548,491 9,870,507 9,613,363 9,173,539

may-fail casts 1618 1198 1133 1038 973

analysis time (secs) 3054 796 1478 961 1566

luindex

may-alias pairs 10,486,363 2,190,854 1,949,134 1,820,992 1,705,415

may-fail casts 794 493 438 408 353

analysis time (secs) 650 90 140 88 145

pmd

may-alias pairs 13,134,083 2,868,130 2,598,100 2,457,457 2,328,304

may-fail casts 1216 845 787 756 698

analysis time (secs) 816 131 191 132 193

antlr

may-alias pairs 16,445,862 5,082,371 4,768,233 4,586,707 4,419,166

may-fail casts 995 610 551 525 466

analysis time (secs) 808 109 162 105 163

lusearch

may-alias pairs 11,788,332 2,251,064 2,010,780 1,886,967 1,771,280

may-fail casts 874 504 450 412 358

analysis time (secs) 668 94 153 91 155

bloat

may-alias pairs 43,408,294 12,532,334 11,608,822 12,155,175 11,374,583

may-fail casts 1944 1401 1311 1316 1226

analysis time (secs) 10679 4508 4770 4460 4724

be safe under 2obj+h (S-2obj+h) are also shown to be safe by B-2obj+h (B-S-
2obj+h), verifying Theorem 2 again. For this second client, 2obj+h, S-2obj+h,
B-2obj+h and B-S-2obj+h are also substantially more precise than 2cs+h.

Performance Bean improves the precision of an object-sensitive analysis at
some small increase in cost, as shown in Table 1. As can be seen in Figs. 1 and 2,
Bean may spend more time on processing more contexts introduced. B-2obj+h
increases the analysis cost of 2obj+h for all the nine benchmarks, ranging from
5.8% for bloat to 109.8% for chart, with an average of 54.8%. In addition, B-S-
2obj+h also increases the analysis cost of S-2obj+h for all the nine benchmarks,
ranging from 5.9% for bloat to 70.3% for lusearch, with an average of 49.1%.

Table 2: Pre-analysis times of Bean (secs). For a program, its pre-analysis time comes
from three components: (1) a context-insensitive points-to analysis (“CI”), (2) OAG
construction per Fig. 6 (OAG), and (3) object-sensitive context computation per Fig. 8
(“CTX-COMP”).

Benchmark xalan chart eclipse fop luindex pmd antlr lusearch bloat

CI 82.6 112.2 49.6 105.5 39.0 65.3 56.9 39.1 52.5

OAG 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.1 0.1

CTX-COMP 83.0 168.0 32.1 236.5 11.7 13.9 13.9 18.3 13.3

Total 165.8 280.4 81.8 342.2 50.9 79.3 71.0 57.5 65.9

Table 2 shows the pre-analysis times of Bean for the nine benchmarks. The
pre-analysis is fast, finishing within 2 minutes for the most of the benchmarks and
in under 6 minutes in the worst case. In Table 1, the analysis times for B-2obj+h
and B-S-2obj+h do not include their corresponding pre-analysis times. There are
three reasons: (1) the points-to information produced by “CI” in Table 2 (for
some other purposes) can be reused, (2) and the combined overhead for “OAG”
and “CTX-COMP” is small, and (3) the same pre-analysis is often used to guide
Bean to refine many object-sensitive analyses (e.g., 2obj+h and S-2obj+h).

2obj+h and S-2obj+h are the top two most precise yet scalable object-
sensitive analyses ever designed for Java programs [14]. Bean is significant as it
improves their precision further at only small increases in analysis cost.

5.3 RQ2: A Real-World Case Study

Let us use java.util.HashSet, a commonly used container from the Java library
to illustrate how B-2obj+h improves the precision of 2obj+h by enabling may-
alias and may-fail-cast to answer their queries more precisely. In Fig. 12, the code
in main() provides an abstraction of a real-world usage scenario for HashSet,
with some code in HashSet and its related classes being extracted directly from
JDK 1.6.0 45. In main(), X and Y do not have any subtype relation.

We consider two queries: (Q1) are v1 and v2 at lines 5 and 11 aliases (from
may-alias)? and (Q2) may the casts at lines 6 and 12 fail (from may-fail-cast)?

Let us examine main(). In lines 2 – 6, we create a HashSet object, HS/1,
insert an X object into it, retrieve the object from HS/1 through its iterator into
v1, and finally, copy v1 to x via a type cast operation (X). In lines 7 – 12, we
proceed as in lines 1 – 6 except that another HashSet object, HS/2, is created,
and the object inserted into HS/2 is a Y object and thus cast back to Y.

Let us examine HashSet, which is implemented in terms of HashMap. Each
HashSet object holds a backing HashMap object, with the elements in a HashSet

being used as the keys in its backing HashMap object. In HashMap, each key and
its value are stored in an Entry object pointed to its field table.

In main(), the elements in a HashSet object are accessed via its iterator,
which is an instance of KeyIterator, an inner class of HashMap.

As before, we have labeled all the allocation sites in their end-of-line com-
ments. Figure 13 gives the part of the OAG related to the two HashSet objects,

1 void main(String[] args) {
2 HashSet xSet = new HashSet(); // HS/1
3 xSet.add(new X()); // X/1
4 Iterator xIter = xSet.iterator();
5 Object v1 = xIter.next();
6 X x = (X) v1;
7
8 HashSet ySet = new HashSet(); // HS/2
9 ySet.add(new Y()); // Y/1

10 Iterator yIter = ySet.iterator();
11 Object v2 = yIter.next();
12 Y y = (Y) v2;
13 }
14 class HashSet ... {
15 HashMap map = new HashMap(); // HM/1
16 public boolean add(Object e) {
17 return map.put(e, ...) == null;
18 }
19 public Iterator iterator() {
20 return map.newKeyIterator();
21 }
22 ...
23 }

23 class HashMap ... {
24 Entry[] table = new Entry[16]; // Entry[]/1
25 public Object put(Object key, ...) { ...
26 table[bucketIndex] =
27 new Entry(key, ...); // Entry/1
28 ... }
29 static class Entry {
30 final Object key;
31 Entry(Object k, ...) {
32 key = k;
33 }
34 }
35 private final class KeyIterator ... {
36 public Object next() { ...
37 Entry e = table[index];
38 return e.key;
39 }
40 }
41 Iterator newKeyIterator() {
42 return new KeyIterator(); // KeyIter/1
43 }
44 ...
45 }

Fig. 12: A real-world application for using java.util.HaseSet.

HS/1 and HS/2, which are known to own their distinct HM/1, Entry/1, Entry[]/1
and KeyIter/1 objects during program execution.

O

Entry/1

HM/1

HS/1 HS/2

Entry[]/1 KeyIter/1

root

Fig. 13: Part of OAG re-
lated to HS/1 and HS/2.

2obj+h. To answer queries Q1 and Q2, we need to
know the points-to sets of v1 and v2 found at lines 5
and 11, respectively. As revealed in Fig. 13, 2obj+h is
able to distinguish the HashMap objects in HS/1 and
HS/2 by using two different heap contexts, [HS/1] and
[HS/2], respectively. However, the two iterator objects
associated with HS/1 and HS/2 are still modeled under
one context [HM/1] as one abstract object KeyIter/1,
which is pointed to by xIter at line 5 and yIter at
line 11. By pointing to X/1 and Y/1 at the same time,
v1 and v2 are reported as aliases and the casts at lines
6 and 12 are also warned to be unsafe.

B-2obj+h. By examining the part of the OAG given in Fig. 13, B-2obj+h
recognises that HM/1 is redundant in the single heap context [HM/1] used by
2obj+h for representing Entry/1, Entry[]/1 and KeyIter/1. Thus, it will create
two distinct sets of these three objects, one under [HS/1] and one under [HS/2],
causing v1 (v2) to point to X/1 (Y/1) only. For query Q1, v1 and v2 are no
longer aliases. For query Q2, the casts at lines 6 and 12 are declared to be safe.

6 Related Work

Object-sensitivity, introduced by Milanova et al. [23, 24], has now been widely
used as an excellent context abstraction for pointer analysis in object-oriented
languages [14, 18, 29]. By distinguishing the calling contexts of a method call in
terms of its receiver object’s k-most-recent allocation sites (rather than k-most-
recent call sites) leading to the method call, object-sensitivity enables object-
oriented features and idioms to be better exploited. This design philosophy en-
ables a k-object-sensitive analysis to yield usually significantly higher precision

at usually much less cost than a k-CFA analysis [17, 8, 14]. The results from our
evaluation have also validated this argument further. In Table 1, 2obj+h is sig-
nificantly more precise than 2cs+h in all the configurations considered and also
significantly faster than 2cs+h for all the benchmarks except xalan.

There once existed some confusion in the literature regarding which allocation
sites should be used for context elements in a k-object-sensitive analysis [9, 15, 17,
24, 30]. This has recently been clarified by Smaragdakis et al. [29], in which the
authors demonstrate that the original statement of object-sensitivity given by
Milanova et al. [24], i.e., full-object-sensitivity in [29], represents a right approach
in designing a k-object-sensitive analysis while the other approaches (e.g., [15])
may result in substantial loss of precision. In this paper, we have formalised and
evaluated Bean based on this original design [24, 29].

For Java programs, hybrid object-sensitivity [14] enables k-CFA (call-site-
sensitivity) to be applied to static call sites and object-sensitivity to virtual call
sites. The resulting hybrid analysis is often more precise than their correspond-
ing non-hybrid analyses at sometimes less and sometimes more analysis cost
(depending on the program). As a general approach, Bean can also improve the
precision of such a hybrid pointer analysis, as demonstrated in our evaluation.

Type-sensitivity [29], which is directly analogous to object-sensitivity, pro-
vides a new sweet spot in the precision-efficiency tradeoff for analysing Java
programs. This context abstraction approximates the allocation sites in a con-
text by the dynamic types (or their upper bounds) of their allocated objects,
making itself more scalable but less precise than object-sensitivity [14, 29]. In
practice, type-sensitivity usually yields an acceptable precision efficiently [20,
21]. How to generalise Bean to refine type-sensitive analysis is a future work.

Oh et al. [26] introduce a selective context-sensitive program analysis for C.
The basic idea is to leverage a pre-impact analysis to guide a subsequent main
analysis in applying context-sensitivity to where the precision improvement is
likely with respect to a given query. In contrast, Bean is designed to improve
the precision of a whole-program pointer analysis for Java, so that many clients
may benefit directly from the improved points-to information obtained.

7 Conclusion

In the past decade, object-sensitivity has been recognised as an excellent con-
text abstraction for designing precise context-sensitive pointer analysis for Java
and thus adopted widely in practice. However, how to make a k-object-sensitive
analysis even more precise while still using a k-limiting context abstraction be-
comes rather challenging. In this paper, we provide a general approach, Bean, to
addressing this problem. By reasoning about an object allocation graph (OAG)
built based on a pre-analysis on the program, we can identify and thus avoid
redundant context elements that are otherwise used in a traditional k-object-
sensitive analysis, thereby improving its precision at a small increase in cost.

In our future work, we plan to generalise Bean to improve the precision of
other forms of context-sensitive pointer analysis for Java that are formulated in

terms of k-CFA and type-sensitivity (among others). Their redundant context
elements can be identified and avoided in an OAG-like graph in a similar way.

8 Acknowledgement

The authors wish to thank the anonymous reviewers for their valuable com-
ments. This work is supported by Australian Research Grants, DP130101970
and DP150102109.

References

1. Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps. PLDI ’14.

2. Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang,
Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel
Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han
Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen,
Daniel von Dincklage, and Ben Wiedermann. The DaCapo benchmarks: Java
benchmarking development and analysis. OOPSLA ’06.

3. Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. Selective control-flow
abstraction via jumping. OOPSLA ’15.

4. Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of
sophisticated points-to analyses. OOPSLA ’09.

5. Chord. A program analysis platform for Java. http://www.cc.gatech.edu/∼naik/
chord.html.

6. Manuvir Das, Ben Liblit, Manuel Fähndrich, and Jakob Rehof. Estimating the
impact of scalable pointer analysis on optimization. SAS ’01.

7. DOOP. A sophisticated framework for Java pointer analysis. http://doop.program-
analysis.org.

8. Yu Feng, Xinyu Wang, Isil Dillig, and Thomas Dillig. Bottom-up context-sensitive
pointer analysis for Java. APLAS ’15.

9. Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay.
Effective typestate verification in the presence of aliasing. ACM Trans. Softw. Eng.
Methodol., 17(2), 2008.

10. Michael I. Gordon, Deokhwan Kim, Jeff H. Perkins, Limei Gilham, Nguyen Nguyen,
and Martin C. Rinard. Information flow analysis of android applications in droid-
safe. NDSS ’15.

11. Ben Hardekopf and Calvin Lin. Flow-sensitive pointer analysis for millions of lines
of code. CGO ’11.

12. Michael Hind. Pointer analysis: Haven’t we solved this problem yet? PASTE ’01.
13. Wei Huang, Yao Dong, Ana Milanova, and Julian Dolby. Scalable and precise taint

analysis for android. ISSTA ’15.
14. George Kastrinis and Yannis Smaragdakis. Hybrid context-sensitivity for points-to

analysis. PLDI ’13.
15. Ondrej Lhoták. Program Analysis using Binary Decision Diagrams. PhD thesis,

2006.

16. Ondrej Lhoták and Kwok-Chiang Andrew Chung. Points-to analysis with efficient
strong updates. POPL ’11.

17. Ondrej Lhoták and Laurie Hendren. Context-sensitive points-to analysis: Is it
worth it? CC ’06.

18. Ondřej Lhoták and Laurie Hendren. Evaluating the benefits of context-sensitive
points-to analysis using a BDD-based implementation. ACM Trans. Softw. Eng.
Methodol., 18(1), 2008.

19. Yue Li, Tian Tan, Yulei Sui, and Jingling Xue. Self-inferencing reflection resolution
for Java. ECOOP ’14.

20. Yue Li, Tian Tan, and Jingling Xue. Effective soundness-guided reflection analysis.
SAS ’15.

21. Yue Li, Tian Tan, Yifei Zhang, and Jingling Xue. Program tailoring: Slicing by
sequential criteria. ECOOP ’16.

22. Ravi Mangal, Xin Zhang, Aditya V. Nori, and Mayur Naik. A user-guided approach
to program analysis. FSE ’15.

23. Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object
sensitivity for points-to and side-effect analyses for java. ISSTA ’02.

24. Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object
sensitivity for points-to analysis for Java. ACM Trans. Softw. Eng. Methodol.,
14(1), 2005.

25. Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for java.
PLDI ’06.

26. Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun Yi. Se-
lective context-sensitivity guided by impact pre-analysis. PLDI ’14.

27. Olin Grigsby Shivers. Control-flow Analysis of Higher-order Languages of Taming
Lambda. PhD thesis, 1991.

28. Yannis Smaragdakis and George Balatsouras. Pointer analysis. Foundations and
Trends in Programming Languages, 2, 2015.

29. Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts
well: understanding object-sensitivity. POPL ’11.

30. Manu Sridharan and Rastislav Bod́ık. Refinement-based context-sensitive points-
to analysis for Java. PLDI ’06.

31. Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J Fink, and Eran Ya-
hav. Aliasing in Object-Oriented Programming. Types, Analysis and Verification,
chapter Alias Analysis for Object-Oriented Programs.

32. Yulei Sui, Peng Di, and Jingling Xue. Sparse flow-sensitive pointer analysis for
multithreaded programs. CGO ’16.

33. Yulei Sui, Yue Li, and Jingling Xue. Query-directed adaptive heap cloning for
optimizing compilers. CGO ’13.

34. Yulei Sui, Ding Ye, and Jingling Xue. Static memory leak detection using full-
sparse value-flow analysis. ISSTA ’12.

35. Yulei Sui, Ding Ye, and Jingling Xue. Detecting memory leaks statically with
full-sparse value-flow analysis. IEEE Trans. Softw. Eng., 40(2), 2014.

36. WALA. T.J. Watson libraries for analysis. http://wala.sf.net.
37. Hongtao Yu, Jingling Xue, Wei Huo, Xiaobing Feng, and Zhaoqing Zhang. Level

by level: making flow- and context-sensitive pointer analysis scalable for millions
of lines of code. CGO ’10.

38. Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. On
abstraction refinement for program analyses in datalog. PLDI ’14.

