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Database-backed applications form the backbone of modern software, yet their complexity poses significant
challenges for static analysis. These applications involve intricate interactions among application code, diverse
database frameworks such as JDBC, Hibernate, and Spring Data JPA, and languages like Java and SQL. In
this paper, we introduce DBridge, the first pointer analysis specifically designed for Java database-backed
applications, capable of statically constructing comprehensive Java-to-database value flows. DBridge unifies
application code analysis, database access specification modeling, SQL analysis, and database abstraction
within a single pointer analysis framework, capturing interactions across a wide range of database access APIs
and frameworks. Additionally, we present DB-Micro, a new micro-benchmark suite with 824 test cases crafted
to systematically evaluate static analysis for database-backed applications. Experiments on DB-Micro and large,
complex, real-world applications demonstrate DBridge’s effectiveness, achieving high recall and precision in
building Java-to-database value flows efficiently and outperforming state-of-the-art tools in SQL statement
identification. To further validate DBridge’s utility, we develop three client analyses for security and program
understanding. Evaluation on these real-world applications reveals 30 Stored XSS attack vulnerabilities and 3
horizontal broken access control vulnerabilities, all previously undiscovered and real, as well as a high detection
rate in impact analysis for schema changes. By open-sourcing DBridge (14K LoC) and DB-Micro (22K LoC),
we seek to help advance static analysis for modern database-backed applications in the future.
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1 Introduction
Database-backed applications (referred to as apps) are central to modern software, offering struc-
tured and efficient mechanisms for data management. In the Java ecosystem, these apps rely on
database access APIs, such as Java Database Connectivity (JDBC) [2], to bridge the app layer with
underlying databases. However, growing enterprise demands and the adoption of frameworks like
Hibernate [1] and Spring Data JPA [5] have significantly complicated Java-to-database interactions,
involving complex specifications and diverse implementations [14]. This complexity poses chal-
lenges for developers in understanding and maintaining the intricate value flows between Java
apps and databases, especially as codebases grow in scale and interdependency. These challenges
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lead to higher maintenance costs and security risks, such as broken access controls and injection
vulnerabilities, which are among the top risks in the OWASP Web Application Security list [4].

Despite advances in static analysis for security and program understanding [9, 11, 24, 35, 38], cur-
rent approaches face substantial limitations when applied to the full spectrum of Java-to-database in-
teractions. Fig. 1 shows common scenarios in which a database-backed app interacts with a database.

JDBC
PostgreSQL Driver,
MySQL Driver, …

JPA
Apache OpenJPA,

Hibernate, …

Spring Data JPA
Spring Data JPA

Database

SQL
SQL:2011,
SQL:2016, …

Legends
Spec.
Impl.

Java App
Spring, 
JavaEE, …

Fig. 1. Java-to-database interactions.

Typically, such apps rely on frameworks like Spring [6], us-
ing features like Inversion of Control (IoC) for logical task
management, and communicate with databases via JDBC,
which uses SQL for actual data operations. To ease devel-
opment, programmers often use advanced database access
specifications like JPA or Spring Data JPA, with the latter
acting as a sophisticated wrapper for the former. Prominent
implementations of these specifications include frameworks
like Hibernate and Spring Data JPA. Other specifications,
like MyBatis, are simpler and can be addressed similarly, so
they are omitted in this work.

Statically capturing Java-to-database value flows requires tracing the flow of data from app code,
through various database access APIs in frameworks, via SQL manipulations, to the database, and
then back to the app code. This full-spectrum value flow analysis is essential for tools that support
tasks like security analysis and program understanding in database-backed apps. Yet, no existing
database-related static analysis approach [9, 15, 21, 27, 28, 31, 32, 45] can capture these fundamental
value flows. The challenge arises mainly from the complexity of database frameworks, which
involve intricate API behaviors shaped by factors like entity relationships, object mappings, and
persistence states. Analyzing these flows requires approximating not only database accesses but also
app behavior, SQL semantics, and database structure—complicating the balance between analysis
soundness and precision (where better soundness means capturing more program behaviors).
To construct Java-to-database value flows, we rely on pointer analysis, a fundamental static

analysis upon which most client analyses are based [33, 37]. Accordingly, we introduce DBridge, the
first pointer analysis specifically crafted to comprehensively analyze Java-to-database interactions.
DBridge comprises three main components: (1) the application analyzer, which handles Java app
code, including enterprise features and its interactions with database access APIs; (2) the database
framework analyzer, which models complex processes within database frameworks, transforming
database access API calls into a set of framework primitives to uniformly express API semantics
across frameworks like JDBC, Hibernate, and Spring Data JPA; (3) the database analyzer, which
converts the output of database framework analyzer into SQL primitives, approximating SQL
execution and statically tracking value flows in the database based on an abstracted database model.
Each component of DBridge extends traditional pointer analysis by introducing rules tailored to
the newly proposed framework and SQL primitives. This enables DBridge to address the diversity
and complexity of constructing Java-to-database value flows, supporting client analyses like secu-
rity analysis and program understanding, thereby enhancing security and reducing maintenance
complexity in database-backed apps. In summary, this paper makes the following contributions.

• We present DBridge, the first pointer analysis approach designed for Java database-backed apps,
capable of constructing comprehensive value flows across the full spectrum of Java-to-database
interactions: this includes handling app code (and relevant enterprise framework features like
Spring’s IoC), complex database access APIs from various database frameworks, SQL syntax and
semantics, and the abstraction of the underlying database.
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• We introduce DB-Micro, the first micro-benchmark suite to systematically evaluate static analysis
for database-backed apps. DB-Micro includes 824 carefully crafted test cases covering key SQL
features and database access APIs from JDBC, JPA, and Spring Data JPA, essential for constructing
value flows in static analysis. DBridge successfully passed 721 out of 824 test cases, demonstrating
robustness in handling diverse language constructs and framework use cases.

• We further evaluate DBridge on ten popular real-world database-backed apps. DBridge achieves
an average recall of 90% (high soundness) and precision of 75% in constructing Java-to-database
value flows. Additionally, DBridge significantly outperforms SLocator [21], a state-of-the-art
approach for SQL statement identification, a fundamental analysis task that is a primary focus in
existing static analysis for database-backed apps.

• To validate DBridge’s practical utility as a foundational tool, we develop three client analyses: two
security tools—a Stored XSS attack analysis and a horizontal broken access control vulnerability
analysis—and a program understanding tool, an impact analysis for database schema changes.
Evaluation on popular apps reveals 30 Stored XSS attack vulnerabilities and 3 horizontal broken
access control vulnerabilities, all previously undiscovered and real, as well as a high detection
rate in identifying 186 out of 195 database access sites affected by schema changes.

• We built DBridge on Tai-e, a state-of-the-art static analysis framework for Java, and fully open-
sourced DBridge (14,842 LoC) and DB-Micro (22,933 LoC) in a publicly accessible artifact (Section
of Data Availability). DBridge will also be released and maintained on Tai-e. We expect that
DBridge and its resources will help advance static analysis for modern database-backed apps.

2 Motivating Example
We start with an example to illustrate how a Java-to-database value flow is established in a database-
backed app (Section 2.1). Next, we introduce the key challenges of static analysis in resolving these
value flows (Section 2.2), and present the design insights behind DBridge (Section 2.3).

2.1 Java-to-Database Value Flows
2.1.1 Overview of Value Flows. Fig. 2 shows a simplified code example from a real-world BBS web
app where it uses JPA (Java Persistence API) [3] to interact with databases, showing how a tainted
value flow is established through Java-to-database interactions.

This app includes three components: the ArticleController class (line 1), which provides the
save (line 3) and find (line 8) APIs for user access; the Service class (line 11), which manages
database interactions via JPA; and the database itself, comprising two tables, article and tag. Each
tag associates a category with an article, and the tid column in the article table maintains
the id of the associated tag. When the save and find APIs are invoked in order, they enable the
saving and retrieval of Article and the associated Tag objects. This process also triggers a value
flow from the app to the database and back, as depicted by the arrows in the figure.

When a user calls the save API (line 3), the Spring framework extracts name and content c from
the input. The app then creates a Tag and an Article object (lines 4-5), stores the input in these
objects and associates these objects (i.e., a.tag = t, executed in line 5 but not shown). The app
then calls the save method (line 6) in the Service class (line 13), which uses JPA persist to store
the Article object in the database (line 14). This persist call also saves the associated Tag due to
the annotation in line 50, a JPA feature that will be explained in Section 2.1.2. During this call, JPA
generates two SQL INSERT statements to save these objects ( 1 2 in Fig. 2). Specifically, statement
2 , INSERT INTO tag (name) VALUE ("taint"), saves the name field of the Tag object, which
contains user-provided “taint” name, into the name column of a new row in the tag table.
When the user calls the find API (line 8) with the id of the Article object, the id—generated

by the database and returned by the save API in line 6—is used to invoke the JPA find (line 18).
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FindTagSaveTag

@Entity @Table("tag")
class Tag {
@GeneratedValue(strategy=IDENTITY)
@Id int id;
@Column("name") String name; ...}

@Entity @Table("article")
class Article {
@Id int id;
@Column("content") String content;
@ManyToOne(cascade=PERSIST)
@JoinColumn("tid") Tag tag; ...}

Java Application
class ArticleController {
Service service = ...;
int save(String c, String name) {
Tag t = new Tag( name );
Article a = new Article( t , c);
return service.save(a);

}
Article find(int id) {
return service.find(id);

}}
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JPA
class Service {
EntityManager em = ...;
int save(Article a) {
em.persist( a );
return a.id; 

}
Article find(int id) {
Article a = em.find(id); 
return a;

}}
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SQL
INSERT INTO

article ...;

INSERT INTO 
tag (name)
VALUE ("taint");
SELECT ... FROM

article ...;

SELECT id, name 
FROM tag
WHERE id = 17;

Database

tag
name id

taint 17

"taint"

PreparedStatement s =
conn.prepareStatement(
"INSERT INTO tag (name) VALUE (?)", 
...);

s.setObject(1, a.tag.name);
s.executeUpdate();
ResultSet r = s.getGeneratedKeys();
if (!r.next()) {...}
a.tag.id = r.getObject(1); // 17

SaveArticle

Line 14: em.persist(a) Line 18:   em.find(id)

FindArticle

PreparedStatement s =
conn.prepareStatement(
"SELECT id, name FROM tag
WHERE id = ?");

s.setObject(1, 17);
ResultSet r=s.executeQuery();
if (!r.next()) {...}
Tag t = new Tag();
t.id = r.getObject(1);
t.name = r.getObject(2);

(a) Runtime behaviors of the persist and find (lines 14 and 18) API calls. (b) Definitions of entity classes by JPA.
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Fig. 2. A simplified example of a real-world BBS app illustrating Java-to-database value flows.

This JPA find API call retrieves the Article object, along with the associated Tag object. During
this call, JPA generates and executes two SQL SELECT statements ( 3 4 ), and converts the query
results into Article and Tag objects. Consequently, the “taint” in the name column of the first row
of the tag table flows into the name field of the Tag object created by JPA. The tainted Tag object
will be used alongside the Article object to render the webpage in the user’s browser.

This example exposes a real Stored XSS vulnerability within the Java-to-database value flow: if an
attacker injects a malicious script into the name parameter of the save API (line 3, replacing “taint”
with a malicious script string), the script will be stored in the tag table. When an unsuspecting
user later invokes the find API, the script may be retrieved and executed in the user’s browser.

2.1.2 Understanding JPA Specification. To abstract and approximate Java-to-database value flows, it
is essential to understand the semantics of high-level database access APIs provided by specifications
like JPA and Spring Data JPA, which ultimately interact with the database through JDBC. Here,
we use two key JPA APIs, persist (line 14) and find (line 18), to illustrate how these high-level
APIs handle automatic conversion between entity objects (e.g., Article and its associated Tag)
and corresponding database records (e.g., rows in the article and tag tables). Fig. 2(a) shows
the semantics-equivalent JDBC statements of persist and find generated by the JPA framework
based on the user-defined entity classes with JPA annotations (Fig. 2(b)). Because understanding (1)
how these JDBC statements are generated and (2) their runtime behaviors is essential for static
analysis to model these high-level APIs, we illustrate (1) and (2) below with examples.

(1) JDBCGeneration. In line 14, persist(a) is meant to save the Article object (i.e., SaveArticle
in Fig. 2(a), code not shown), but it also saves the Tag object (i.e., SaveTag). This is because, in the en-
tity class Article (see Fig. 2(b)), the tag field has a JPA annotation @ManyToOne(cascade=PERSIST),
which specifies that multiple Article objects may share the same Tag and ensures that persisting
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an Article also saves its related Tag. Similarly, the reason why the SQL-like JDBC INSERT state-
ment in line 23 knows to insert into the tag table and target the name column is determined by
annotations in the Tag entity class. Specifically, the @Table("tag") (line 40) maps the Tag entity
to the tag table, and the @Column (line 44) maps the name field to the name column in this table.
(2) Runtime Behavior of JDBC. It is essential to capture the runtime behaviors of the four core

steps in JDBC statement manipulation: New Statement, Init Statement, Execute Statement, and Process
Result. We illustrate these steps using the JDBC code for saving Tag to the database (lines 21–29).
• New Statement: in lines 21–24, PreparedStatement is created to construct an SQL-like statement
to be initialized and executed. Here, the INSERT statement (line 23) includes a parameter “?”,
allowing for substitution at runtime.

• Init Statement: in line 25, setObject initializes the parameter in the SQL-like statement. The
first argument, 1, specifies that the first parameter of the INSERT statement is set to a.tag.name.
In some JDBC statements, if the New Statement does not include an SQL-like statement, it is
initialized separately by calling a similar method as in the Init Statement.

• Execute Statement: in line 26, executeUpdate sends the initialized INSERT (a real SQL statement)
to the database to create a new row in the Tag table, insert the name field value into the name
column, and generate an auto-incremented ID, say 17, as specified by the annotation in line 42.

• Process Result: JDBC uses ResultSet to store database results, which can be fetched in different
ways, like using getGeneratedKeys in line 27 or querying directly with executeQuery in line
35. Lines 36–39 show how a database record is converted into an object (ResultSet iterates
through each row, and getObject returns the value of a specified column in the row).
After reviewing the JDBC code for persist, understanding the find code (lines 30–39) is

straightforward, so we will omit further explanation. However, one point needs clarification as it is
also critical for static analysis when modeling these high-level APIs: how does the generated JDBC
code identify the Tag object’s ID as 17 (line 34)? This occurs because, to maintain the association
between the Article and Tag objects, the Tag’s ID is stored as a foreign key in the tid column of
the article table during the persistence of the Article object (indicated by @JoinColumn("tid")
in line 51). Thus, when an Article is retrieved by its ID, say 1, by em.find(1), JPA first looks up
the tid value associated with the Article (17 in this case). This fetches the Tag object with ID 17
(line 38), along with its name (“taint”) (line 39), finally resulting in a tainted value flow.

2.2 Challenges
We highlight two key challenges in pointer analysis for database-backed apps: the complexity and
diversity of database access APIs, and the intricacies of cross-language analysis for Java and SQL.

Pointer Analysis for Complex and Diverse Database Access APIs. The complexity of analyzing Java
database access APIs, such as JDBC, JPA, and Spring Data JPA, is immense. These specifications
define hundreds of APIs, each exhibiting diverse behaviors influenced by factors like entity rela-
tionships, query types and persistence states. Unlike our simplified example with a many-to-one
relationship (line 50), real-world scenarios involve a wide range of relationships—one-to-one, one-
to-many, many-to-many, embedded, and inheritance—which can be unidirectional or bidirectional,
with cascading or non-cascading behaviors. This variability significantly complicates the tracking
of interactions between entities and their database representations. Moreover, while our example
shows a simple entity-type query based on an entity’s ID (line 18), real-world frameworks support
various query types—such as JPQL, Native, Criteria, Named, Method-Name, andMethod-Annotation
queries—each requiring distinct handling for query translation and execution. The persistence state
of entities (transient or persistent) further complicates database access, affecting how entities are
saved, updated, or queried. Additionally, in JPA implementations like Hibernate, behaviors are not
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only defined by annotations but also rely on external configuration files and metadata, dynamically
applied through reflection. This further complicates the analysis, making it challenging to account
for all the varying scenarios in a comprehensive manner.

Cross-language Pointer Analysis for Java and SQL. SQL is a language distinct from Java, with its
own syntax and semantics. For constructing Java-to-database value flows, cross-language pointer
analysis is essential. However, no existing pointer analysis or static analysis approach addresses
this challenge. The difficulty largely stems from the complexity of SQL, which includes a broad
array of operations that impact pointer analysis. These operations cover statements (e.g., INSERT,
SELECT, UPDATE), clauses (e.g., WHERE, INNER/OUTER JOIN, FROM), predicates (e.g., IN, LIKE,
NULL checks), expressions (e.g., logical/arithmetic/comparison/bit operations, column references,
functions), and aliases (e.g., table and column aliases). Given their frequent use in real-world apps,
a comprehensive analysis must model the effects of as many of these operations as possible. While
our motivating example presents simple SQL statements, real-world scenarios often involve more
complex operations. For instance, JPA can retrieve data from both the article and tag tables in a
single query like: SELECT a.id, a.tid, t.id FROM article AS a INNER JOIN tag AS t ON
a.tid = t.id WHERE a.id = 1 (supplementary materials offer much more intricate cases).

Finally, it is worth mentioning that despite these two challenges, DBridge effectively handles the
majority of the diverse and complex scenarios discussed above, as demonstrated in Section 6.1.

2.3 Design Insights of DBridge
The goal of DBridge is to design a unified pointer analysis that integrates the analysis of all
components involved in Java-to-database interactions, including app code, database access APIs
from various frameworks, SQL statements, and the underlying databases. Consolidating these
analyses within a single pointer analysis offers two main advantages. First, the unified, on-the-fly
pointer analysis can improve soundness by enhancing the resolution of one component using results
from others. Second, it enables the direct application of selective context-sensitivity techniques [17,
34] inherent in pointer analysis to any component’s code, without modifying the analysis rules.
This allows us to effectively balance precision and efficiency. This is also the key reason why
DBridge can easily achieve high efficiency in analyzing large, database-backed apps, as explained
and demonstrated in Section 6.2. Given these benefits, for future work like handling other types
of frameworks or hard-to-analyze programs, we recommend integrating the analysis of each
component under a unified pointer analysis framework to achieve reinforced soundness and a
tunable performance trade-off.
Analyzing database access APIs and SQL presents significant challenges due to their diversity

and complexity, as discussed in Section 2.2. To address this, we propose to design pointer analysis
rules based on two sets of primitives: framework primitives (F-primitives) and SQL primitives.
This design, akin to a multiple intermediate representation (IR) in compilers, allows the analysis
algorithms to focus on the core language representation while avoiding the diversity and intricacies
of high-level abstractions. One might question why we use both F-primitives and SQL primitives,
given that database access APIs ultimately translate to SQL for database interaction. Why not rely
solely on SQL primitives? The answer lies in the fact that F-primitives capture more information
than SQL primitives. For instance, F-primitives also represent the instructions for retrieving records
from the database and mapping them to Java objects.
Drawing from extensive specifications of various database access frameworks and their real-

world usage, we meticulously define four types of F-primitives, totaling 19 distinct F-primitives,
and five types of SQL primitives, totaling 21 distinct SQL primitives (see Section 5 for details). To
facilitate the analysis, we implement a framework statement transformer that converts JDBC, JPA,
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and Spring Data JPA APIs into F-primitives (e.g., JDBC offers 50 APIs just for initializing JDBC
statements, all of which are translated into a single F-primitive). A transformer then converts the
F-primitives representing SQL execution into SQL primitives. We choose not to first translate JPA
and Spring Data JPA to JDBC before converting to F-primitives, as such a static translation would
be too complex and impractical.

Finally, we extend traditional Andersen-style pointer analysis for regular Java statements [33, 37]
to incorporate new analysis rules for both F-primitives and SQL primitives. Since the entire analysis
is built on the same theoretical framework, the effect of pointer analysis on an F-primitive can
influence the analysis of regular Java statements or SQL primitives, and vice versa. This results in a
cohesive, on-the-fly analysis.

3 DB-Micro
The interaction between Java apps and databases is inherently complex, involving diverse and
intricate API calls from database frameworks, as well as SQL statements with complex constructs
and semantics. To our knowledge, no benchmark systematically captures the key behaviors of these
components, posing a challenge for effectively evaluating static analysis tools. To address this gap,
we developed DB-Micro, a suite of micro-benchmarks designed to comprehensively evaluate the
capability of static analysis tools in constructing Java-to-database value flows.

DB-Micro comprehensively encompasses the diverse behaviors involved in Java-to-database
interactions, including all the interaction scenarios mentioned in the Challenges section (Section 2.2).
This suite systematically incorporates key SQL operations, a broad range of query types, diverse
entity relationships, and various entity persistence states, all of which are critical for constructing
Java-to-database value flows in static analysis.
Specifically, DB-Micro consists of four benchmarks: one for SQL and three others tailored

to JDBC, JPA, and Spring Data JPA (Fig. 5). The SQL benchmark covers a broad array of SQL
operations relevant to pointer analysis. It includes key SQL statements (e.g., INSERT, SELECT,
UPDATE), clauses (e.g., WHERE, INNER JOIN, OUTER JOIN, FROM), predicates (e.g., IN, LIKE,
NULL checks), expressions (e.g., logical, arithmetic, comparison, and bitwise operations, column
references, functions), and aliases (e.g., table and column aliases.) The JDBC, JPA, and Spring Data
JPA benchmarks include eight query types, like Native Query, JPQL Query, Named Query, and
Criteria Query, covering all query types except for StoredProcedure Query, which is less commonly
used. Moreover, DB-Micro encompasses a comprehensive set of entity relationships, including
one-to-one, one-to-many, many-to-one, and many-to-many relationships, as well as embedded
objects and inheritance hierarchies. It also considers variations in these relationships, such as
different associations (unidirectional vs. bidirectional), different fetch strategies (eager vs. lazy
loading), and various cascade operations.
By integrating these multifaceted aspects, DB-Micro includes 824 carefully crafted test cases

(10,172 lines of Java code), designed based on specifications, documentation, and inspections of
high-quality real-world apps. Additionally, it provides corresponding ground truth data (12,761 lines
of JSON code) for each test case, along with automated evaluation scripts. By converting the output
of a static analysis tool into the required JSON format, these scripts can automatically generate an
evaluation report. More details of DB-Micro are available in the supplementary material [20].

4 DBridge, Informally
In this section, we describe the working mechanism of DBridge, focusing on its analysis of Java-to-
database interactions. Fig. 3 provides an overview of DBridge, which is composed of three main
components: (1) an application analyzer that performs pointer analysis on the Java application to
construct its value flows; (2) a database framework analyzer that handles database access APIs in
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Fig. 3. The DBridge framework.

JDBC, JPA, and Spring Data JPA, bridging the value flows between the Java application and the
database; and (3) a database analyzer that processes SQL statements to model the database and trace
value flows within the database. Fig. 3 illustrates the interactions among these components, marked
by 1 - 4 and discussed in detail later. The output of DBridge includes essential information such as
Java-to-database value flows and SQL statements that might be executed at runtime, supporting
various clients, including security analysis and program understanding.

Below, we introduce the three components of DBridge and explain their interactions.

Application (App) Analyzer. The app analyzer performs pointer analysis on the Java application
to compute points-to relations and construct its call graph. During this process, when the app
analyzer encounters a database access API callsite, it delegates the callsite, along with the points-to
relations of the API call arguments, to the database framework analyzer to initiate its analysis ( 1 ).

We observed that database-backed applications often use the Spring framework, which introduces
complex mechanisms implemented with challenging Java features (e.g., reliance on annotations and
native code) that pose significant challenges for pointer analysis. To enhance the effectiveness of
DBridge in analyzing such applications, we incorporate a Spring Web Analyzer in the app analyzer.
This component models the intricate mechanisms provided by the Spring framework, including
customized entry points and dependency injection, following state-of-the-art approaches [7].

Database Framework Analyzer. We introduce a database framework analyzer to handle complex
database access APIs in JDBC, JPA, and Spring Data JPA. To interact with a database, these frame-
works generate and initialize JDBC SQL (J-SQL for short—an extended SQL containing parameters
that reference Java values) statements, send them to the database, and process the result. The
analyzer models these behaviors.

Triggered by API calls and their arguments from the app analyzer ( 1 ), the database framework
analyzer models the API semantics to generate corresponding J-SQL statements and forwards
them, along with the points-to relations of the parameters in the J-SQL statements, to the database
analyzer ( 2 ). The database analyzer processes these J-SQL statements (discussed in detail later)
and returns the results ( 3 ). Based on these results and the API semantics, the database framework
analyzer analyzes the side effects on pointer analysis and reports them to the app analyzer ( 4 ).
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To address the complexities of various database access APIs across different database frameworks,
as discussed in Section 2.3, we designed 19 framework primitives that abstract the diverse behaviors
involved in the four core steps of database access. Due to space constraints, we only detail the
handling of key F-primitives in Section 5.2. The database framework analyzer operates based on
F-primitives, transforming database access API calls into corresponding F-primitives and then
analyzing them to model their behavior.

As shown in Fig. 3, the database framework analyzer employs the mapping extractor, relationship
extractor, and state manager to collect database-related information needed for analyzing database
access API calls, such as mappings between Java objects and database contents and relationships
between entities. This information is primarily extracted from the application through APIs or
annotations provided by database frameworks. The framework statement transformer uses this
information to convert queries into F-primitives. Each query consists of a series of operations that
complete a database access. For example, SaveTag and FindTag in Fig. 2(a) represent two distinct
queries. The analyzer supports a wide range of queries across various frameworks. The framework
primitive handler processes these F-primitives, generating J-SQL statements and passing them to
the database analyzer with the points-to relations of the parameters. It also links value flows from
the database to the Java application (e.g., transforming the query results from the database into
entity objects), while updating the persistence states of entity objects in the state manager.

Database Analyzer. In the database analyzer, we design a database model to simulate the execution
of J-SQL statements. The analyzer consists of three main components: a J-SQL statement transformer,
an SQL primitive handler, and a database modeler. The J-SQL statement transformer converts each
J-SQL statement from the database framework analyzer ( 2 ) into a series of SQL primitives designed
to address the complexities of various SQL operations, as discussed in Section 2.3. The database
modeler statically represents database tables, rows, columns, and their contents as a collection of
pointers and objects that interact with pointer analysis. The SQL primitive handler works with the
database modeler to perform pointer analysis on these primitives, establishing points-to relations
between SQL variables (e.g., variables referencing tables, rows, or columns) and database objects
(e.g., table objects, row objects, or constants), and sends the results back to the database framework
analyzer ( 3 ). The database model and the handling of key SQL primitives are detailed in Sections 5.1
and 5.3, respectively.

5 DBridge, in Detail
In this section, we delve into the core working mechanism of DBridge, which, as described in
Section 4, involves the app analyzer, database framework analyzer, and database analyzer. Because
the app analyzer employs standard Java pointer analysis [29, 30, 33, 37] and integrates state-of-the-
art techniques [7] for handling the Spring framework, we focus on the handling of core F-primitives
and SQL-primitives for the database framework analyzer and database analyzer, respectively.

In Section 5.1, we start by offering an overview of the core primitives’ working mechanisms. This
includes an introduction to the database framework model and the database model, both of which
are crucial for managing these primitives. With this foundation, we can more easily understand
the handling of F-primitives and SQL primitives in Sections 5.2 and 5.3, respectively. Finally, in
Section 5.4, we further understand how DBridge constructs specific Java-to-database value flows
by working through a concrete example that illustrates the processing of relevant primitives.
Please note that we have also formalized all the core primitives and the pointer analysis rules

for managing them in the supplemental material [20]. Additionally, we have released the full
implementation of DBridge as open-source [19], ensuring that all its details are publicly accessible.
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Fig. 4. Overview of pointer analysis for Framework primitives, SQL primitives, and regular Java statements.

5.1 Overview of Core Primitive Handling in DBridge
As explained in Section 2.3, DBridge builds upon traditional pointer analysis by incorporating new
rules specifically designed to handle F-primitives and SQL primitives. As shown in Fig. 4, the essence
of DBridge’s pointer analysis lies in generating new points-to relations when processing various
primitives (these relations include the relations between variables and objects, as well as those
between objects, like 𝑜1 .𝑓 pointing to 𝑜2). This process typically involves accessing the points-to
relations of pointers within primitives and generating points-to relations based on primitives’
semantics. Once generated, these points-to relations are updated in the unified heap model.
Beyond the traditional heap model (comprising regular heap objects created at allocation sites

and various constant objects), to construct Java-to-database value flows, we have developed a new
database framework model and database model (see the middle part of Fig. 4). These models include
essential abstracted objects pertinent to handling database frameworks (i.e., Statement objects and
ResultSet objects) as well as objects that represent the database itself (i.e., Table objects and Row
objects). We will introduce these two models in the subsequent part of this section and explain
how DBridge handles F-primitives and SQL primitives in Sections 5.2 and 5.3, respectively.

Database Framework Model. We present a database framework model that enables us to simulate
the behavior of database framework APIs. Most Java database frameworks are built upon JDBC, a
Java interface that allows applications to execute SQL statements on a database. These frameworks
offer APIs to manipulate JDBC statements, which is why the database framework analyzer is
centered around JDBC. Hence, our database framework model is also designed around JDBC.
In JDBC, a JDBC statement encapsulates a J-SQL statement and a series of parameters for that

statement. In our model, each JDBC statement is represented as a JDBC statement object. This object
includes a field, 𝑠𝑞𝑙 , which points to the encapsulated J-SQL statement, as well as a series of fields
that point to the resolved parameters for the statement. Additionally, the execution result of a JDBC
statement is essentially a two-dimensional array, which we model as a ResultSet object.

Database Model. We present a database model designed to leverage pointer analysis for simulating
database operations. In this model, each database table is represented by a table object, with the
table name serving as its unique identifier. We associate this table object with a list of column
names corresponding to the table’s structure.

A database table can contain multiple rows, which we model as row objects. Each table object has
a 𝑟𝑜𝑤𝑠 field that points to the row objects inserted into the table. Each row may contain several
columns, each holding a specific value. In our model, these columns are represented as fields of the
row objects, with the column names serving as the field names. The relationship between a column
and its corresponding value is captured through points-to relations, where the field of a row points
to the value it holds. Thus, row objects and their fields effectively model the structure of the table’s
rows and columns, while the values within the rows are represented as Java objects and constants.
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5.2 Database Framework Analyzer
The database framework analyzer transforms each database access API call into a series of frame-
work primitives (F-primitives) and analyzes them. Given the complexity and diversity of this
transformation, involving multiple database frameworks and hundreds of APIs, we omit the full
details here for brevity. Instead, we offer a brief introduction to our F-primitives and their notations,
followed by an explanation of several representative primitives and how they are handled in detail.

F-Primitive and Notation. To model how frameworks manipulate JDBC statements, we define
19 framework primitives (F-primitives), which are categorized into four types: (1) New Statement,
which creates a JDBC statement object and encapsulates a J-SQL statement within it; (2) Initialize
Statement, which resolves the parameters for a JDBC statement object and stores them in its fields;
(3) Execute Statement, which carries out the execution of an initialized JDBC statement; and (4)
Process Result, which transforms the result of the Execute Statement (such as ResultSet objects)
into Java elements, typically represented as a Java entity or an integer (e.g., the ID of a Java entity).
The notation for an F-primitive is PrimitiveName⟨𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝐼1, 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑂2 , 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝐼𝑂3 ⟩, where each

𝑒𝑙𝑒𝑚𝑒𝑛𝑡 signifies an input or output component of the primitive. These components can be pointers
or string constants, either generated by DBridge when creating the primitive or originating from
the Java application. Superscripts indicate 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ’s roles: 𝐼 for input, 𝑂 for output, and 𝐼𝑂 for
both input and output. Input elements, whether the object pointed to by the pointers or string
constants, are used in primitive handling, while output elements (always pointers) receive new
points-to relations generated during primitive handling.
Next, we introduce one representative primitive for each type of F-primitive, detailing each in

two parts: the description, which specifies its meaning along with its inputs and outputs, and the
handling, which explains how DBridge processes it.

New Statement. Representative: 𝑁𝑒𝑤𝑆𝑡𝑚𝑡𝐵𝑦𝐸𝑛𝑡𝑖𝑡𝑦𝑇𝑦𝑝𝑒 ⟨𝑒𝑛𝑡𝑖𝑡𝑦𝑇𝑦𝑝𝑒𝐼 , 𝑠𝑞𝑙𝑂𝑝𝐼 , 𝑠𝑡𝑚𝑡𝑂 ⟩.
• Description: This primitive describes the creation of a JDBC statement, which is subsequently
used to query or save an entity object. The input 𝑒𝑛𝑡𝑖𝑡𝑦𝑇𝑦𝑝𝑒𝐼 is a string constant that
represents the type of the manipulated entity object (e.g., "Article.class"), and the input
𝑠𝑞𝑙𝑂𝑝𝐼 is also a string constant, which represents the specified SQL operation (e.g., "INSERT").
The newly created JDBC statement will be stored in 𝑠𝑡𝑚𝑡𝑂 as output.

• Handling: To handle this primitive, DBridge starts by constructing a J-SQL statement, which
is a string constant formulated based on the entity type 𝑒𝑛𝑡𝑖𝑡𝑦𝑇𝑦𝑝𝑒𝐼 and the SQL operation
𝑠𝑞𝑙𝑂𝑝𝐼 . Next, it creates a JDBC statement object, setting its 𝑠𝑞𝑙 field to point to the constructed
J-SQL statement. Finally, this object is added to the points-to set of the pointer 𝑠𝑡𝑚𝑡𝑂 .

Notably, the created JDBC statement object will also be manipulated or utilized by other primi-
tives: its parameter fields will be initialized through the handling of Init Statement primitives, and
its execution will be modeled through the handling of the Execute Statement primitives.

Init Statement. Representative: 𝐼𝑛𝑖𝑡𝑆𝑡𝑚𝑡𝐵𝑦𝐸𝑛𝑡𝑖𝑡𝑦⟨𝑠𝑡𝑚𝑡 𝐼𝑂 , 𝑒𝑛𝑡𝑖𝑡𝑦𝐼 ⟩.
• This primitive describes the initialization of a JDBC statement, setting its parameters to the
values from the fields of a specified entity. The input 𝑠𝑡𝑚𝑡 𝐼𝑂 is a pointer that points to the
JDBC statement to be initialized, and the input 𝑒𝑛𝑡𝑖𝑡𝑦𝐼 is a pointer to the entity that will be
persisted in the database (e.g., an Article object). The values of the entity’s fields will be
assigned to the parameters of the JDBC statement as output.

• Handling: DBridge initializes a JDBC statement object pointed to by the pointer 𝑠𝑡𝑚𝑡 𝐼𝑂 using
the fields derived from the entity object pointed to by 𝑒𝑛𝑡𝑖𝑡𝑦𝐼 . Specifically, the points-to set
of the fields of the entity object is propagated to the corresponding parameter fields of the
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JDBC statement object. By processing this type of primitives, DBridge constructs the value
flows from Java app to database framework (represented by JDBC statement objects).

Execute Statement. Representative: 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑆𝑡𝑚𝑡 ⟨𝑠𝑡𝑚𝑡 𝐼 , 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡𝑂 ⟩.
• Description: This primitive describes the execution of a JDBC statement. The input 𝑠𝑡𝑚𝑡 𝐼 is a
pointer that points to the JDBC statement to be executed. A newly created ResultSet, which
represents the execution result, will be stored in 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡𝑂 as output.

• Handling: For the JDBC statement object pointed to by 𝑠𝑡𝑚𝑡 𝐼 , DBridge transforms the con-
tained J-SQL statement and its parameters into a series of SQL primitives and processes them
(see Section 5.3 for details). Subsequently, DBridge converts the simulated execution result
of the JDBC statement—such as data retrieved from the database—into a ResetSet object,
which is then stored in the points-to set of pointer 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡𝑂 . Through the handling of such
primitives, DBridge builds the value flow between database framework and database.

Process Result. Representative: 𝑅𝑒𝑠𝑢𝑙𝑡𝑇𝑜𝐸𝑛𝑡𝑖𝑡𝑦⟨𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡 𝐼 , 𝑒𝑛𝑡𝑖𝑡𝑦𝑇𝑦𝑝𝑒𝐼 , 𝑒𝑛𝑡𝑖𝑡𝑦𝑂 ⟩.
• Description: This primitive describes the conversion of a JDBC statement execution result
into an entity object. The input 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡 𝐼 is a pointer that points to a ResultSet object, which
represents the results of the statement execution. Additionally, the input 𝑒𝑛𝑡𝑖𝑡𝑦𝑇𝑦𝑝𝑒𝐼 is a
string constant that specifies the type of the entity object into which the ResultSet object
will be converted. The newly created entity will be stored in 𝑒𝑛𝑡𝑖𝑡𝑦𝑂 as output.

• Handling: DBridge starts by creating an entity object of the specified type 𝑒𝑛𝑡𝑖𝑡𝑦𝑇𝑦𝑝𝑒𝐼 . Then,
it extracts the query results from the ResultSet object pointed to by 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡 𝐼 and stores
them in the appropriate fields of the entity object. Finally, this entity object is added to the
points-to set of the pointer 𝑒𝑛𝑡𝑖𝑡𝑦𝑂 . By handling this type of primitives, DBridge establishes
the value flow from the database framework (represented by ResultSet objects) back to the
Java application (represented by Java entity objects).

5.3 Database Analyzer
The database analyzer transforms each J-SQL statement (obtained from the database framework
analyzer) into a series of SQL primitives and analyzes them. The transformation process involves
parsing the J-SQL statement to generate its AST and performing semantic analysis to extract SQL
primitives. Given the tedious and complex nature of this process, we will omit these intricate details
and instead focus on the SQL primitives themselves and how they are handled.

SQL Primitive. In DBridge, we define 21 SQL primitives to represent various database operations
initiated by SQL statements (such as create, select, etc.). The notation for SQL primitives mirrors
that of F-primitives, as outlined in Section 5.2. Each primitive is similarly composed of two parts:
the description and the handling. Below, we introduce the most essential and commonly used
SQL primitives along with their handling. For clarity, we have simplified the structure of these
primitives, with a more detailed version available in the supplemental material.

𝑐𝑟𝑒𝑎𝑡𝑒 ⟨𝑡𝑎𝑏𝑙𝑒𝑂 , 𝑡𝑎𝑏𝑙𝑒𝑁𝑎𝑚𝑒𝐼 , 𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒𝐼1, . . . , 𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒𝐼𝑛⟩.
• Description: This primitive describes the creation of a database table. The input consists of a
series of string constants, where 𝑡𝑎𝑏𝑙𝑒𝑁𝑎𝑚𝑒𝐼 represents the name of the table to be created,
and 𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒𝐼1, . . . , 𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒𝐼𝑛 represents the column names of the table. A newly
created table will be stored in 𝑡𝑎𝑏𝑙𝑒𝑂 as output.

• Handling: DBridge generates a table object, identified by 𝑡𝑎𝑏𝑙𝑒𝑁𝑎𝑚𝑒𝐼 , and adds it to the
points-to set of 𝑡𝑎𝑏𝑙𝑒𝑂 . Additionally, this generated table object is associated with the column
names 𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒𝐼1, . . . , 𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒𝐼𝑛 .
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𝑠𝑒𝑙𝑒𝑐𝑡 ⟨𝑡𝑎𝑏𝑙𝑒𝐼𝑠𝑜𝑢𝑟𝑐𝑒 , 𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒𝐼1, . . . , 𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒𝐼𝑛, 𝑡𝑎𝑏𝑙𝑒
𝑂
𝑡𝑎𝑟𝑔𝑒𝑡 ⟩.

• Description: This primitive describes a select operation that extracts specific columns from
a source table to construct a new table. The input 𝑡𝑎𝑏𝑙𝑒𝐼source is the source table, and the
inputs 𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒𝐼1, . . . , 𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒𝐼𝑛 are string constants representing the names of the
columns to be selected. The selected columns are used to create a new table, which is stored
in 𝑡𝑎𝑏𝑙𝑒𝑂target as output.

• Handling: DBridge creates a new table object and adds it in the points-to set of 𝑡𝑎𝑏𝑙𝑒𝑂𝑡𝑎𝑟𝑔𝑒𝑡 .
To initialize this table object, DBridge creates a new row object for each row object found in
the table object pointed to by 𝑡𝑎𝑏𝑙𝑒𝐼𝑠𝑜𝑢𝑟𝑐𝑒 . Besides, the points-to sets of the selected columns
𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒𝐼1, . . . , 𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒𝐼𝑛 (modeled as fields, as described in Section 5.1) from the
source row objects are propagated to the corresponding columns in the new row objects.

𝑖𝑛𝑠𝑒𝑟𝑡 ⟨𝑡𝑎𝑏𝑙𝑒𝐼𝑂 , 𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒𝐼1, . . . , 𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒𝐼𝑛, 𝑒𝑥𝑝
𝐼
1, . . . , 𝑒𝑥𝑝

𝐼
𝑛, 𝑝𝑎𝑟𝑎𝑚

𝐼
1, . . . , 𝑝𝑎𝑟𝑎𝑚

𝐼
𝑚⟩.

• Description: This primitive describes the insertion of a new row into a database table. The
input of this primitive consists of four parts: (1) 𝑡𝑎𝑏𝑙𝑒𝐼𝑂 is the table to be inserted into; (2) the
string constants 𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒𝐼1, . . . , 𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒𝐼𝑛 , which represent the columns of the table
to be inserted into; (3) the string constants 𝑒𝑥𝑝𝐼1, . . . , 𝑒𝑥𝑝

𝐼
𝑛 , which represent SQL expressions

used to compute the values to be inserted into the table; and (4) 𝑝𝑎𝑟𝑎𝑚𝐼
1, . . . , 𝑝𝑎𝑟𝑎𝑚

𝐼
𝑚 are

J-SQL parameters, which are used in SQL expressions evaluation. The evaluation results of
these SQL expressions are used to create a new row object, which will be stored in the table
corresponding to 𝑡𝑎𝑏𝑙𝑒𝐼𝑂 as output.

• Handling: DBridge starts by creating a new row object and stores it into the table object
pointed to by 𝑡𝑎𝑏𝑙𝑒𝐼𝑂 . It then initializes the row object. Specifically, DBridge propagates the
objects obtained from evaluating the expressions 𝑒𝑥𝑝𝐼1, . . . , 𝑒𝑥𝑝

𝐼
𝑛 into the columns named

𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒𝐼1, . . . , 𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒𝐼𝑛 of the new row object.

𝑗𝑜𝑖𝑛⟨𝑡𝑎𝑏𝑙𝑒𝐼
𝑙𝑒 𝑓 𝑡

, 𝑡𝑎𝑏𝑙𝑒𝐼
𝑟𝑖𝑔ℎ𝑡

, 𝑡𝑎𝑏𝑙𝑒𝑂
𝑟𝑒𝑠𝑢𝑙𝑡

⟩.
• Description: This primitive describes a join operation that combines two input tables into a
temporary result table. The inputs 𝑡𝑎𝑏𝑙𝑒𝐼

𝑙𝑒 𝑓 𝑡
and 𝑡𝑎𝑏𝑙𝑒𝐼

𝑟𝑖𝑔ℎ𝑡
represent the tables to be joined.

The resulting table is then stored in 𝑡𝑎𝑏𝑙𝑒𝑂
𝑟𝑒𝑠𝑢𝑙𝑡

as output.
• Handling: When processing this primitive, DBridge first creates a new table object for the
pointer 𝑡𝑎𝑏𝑙𝑒𝑂

𝑟𝑒𝑠𝑢𝑙𝑡
. It then computes the Cartesian product of all row objects in 𝑡𝑎𝑏𝑙𝑒𝐼

𝑙𝑒 𝑓 𝑡
and

𝑡𝑎𝑏𝑙𝑒𝐼
𝑟𝑖𝑔ℎ𝑡

. For each resulting pair from this product, DBridge constructs a new row object
that combines all columns from the two row objects. Finally, this newly created row object is
added to the points-to set of the table object’s 𝑟𝑜𝑤𝑠 field.

Note that the analysis conducted by DBridge is sound with respect to the primitives it handles,
as we ensure an over-approximation of their semantics. However, DBridge is not sound for the
entire range of Java-to-database interactions due to the inherent complexity. Specifically, for SQL,
it struggles to model the semantics of SQL built-in functions; for database frameworks, DBridge
cannot fully handle Criteria Query due to the numerous API calls needed for even a single criterion;
for Java app, DBridge does not account for SQL statements dynamically generated through string
concatenation. These limitations are further explained and demonstrated in Sections 6.1 and 6.2.2.

5.4 Example
In this section, we further illustrate howDBridge constructs specific Java-to-database value flows by
working through a concrete example. We begin by presenting the F-primitives and SQL primitives
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that DBridge generates for a given database access API call. Then, we illustrate how DBridge
processes these primitives to construct Java-to-database value flows.
We develop this section around the call em.persist(a) (line 14 in Fig. 2), which triggers the

saving of an Article object along with its associated Tag objects. For clarity and brevity, we focus
solely on the saving of the Tag object. Nonetheless, a thorough understanding of the previous
sections is necessary to grasp the following material; thus, we invite readers to revisit them first.

Primitive Generation. To abstract the process of persisting a Tag object via a JDBC statement,
DBridge generates the following four primitives.
(1) 𝑁𝑒𝑤𝑆𝑡𝑚𝑡𝐵𝑦𝐸𝑛𝑡𝑖𝑡𝑦𝑇𝑦𝑝𝑒 ⟨"Tag.class"𝐼 , "INSERT"𝐼 , 𝑠𝑡𝑚𝑡𝑂 ⟩.This F-primitive describes the cre-

ation of the JDBC statement, which wraps the INSERT statement for saving the Tag object.
(2) 𝐼𝑛𝑖𝑡𝑆𝑡𝑚𝑡𝐵𝑦𝐸𝑛𝑡𝑖𝑡𝑦⟨𝑠𝑡𝑚𝑡 𝐼𝑂 , 𝑒𝑛𝑡𝑖𝑡𝑦𝐼 ⟩. This F-primitive describes the process of converting the Tag

object held by 𝑒𝑛𝑡𝑖𝑡𝑦𝐼 into parameters of the JDBC statement.
(3) 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑆𝑡𝑚𝑡 ⟨𝑠𝑡𝑚𝑡 𝐼 , 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡𝑂 ⟩. This F-primitive describes the execution of the JDBC statement,

transforming the INSERT statement and parameters of the JDBC statement to the following
𝑖𝑛𝑠𝑒𝑟𝑡 primitive. The execution result of the JDBC statement is then assigned to 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡𝑂 .

(4) 𝑖𝑛𝑠𝑒𝑟𝑡 ⟨𝑡𝑎𝑏𝑙𝑒𝐼𝑂 , "name"𝐼 , "?1"𝐼 , 𝑝𝑎𝑟𝑎𝑚𝐼 ⟩. This SQL primitive describes the execution of the INSERT
statement, which ultimately inserts the Tag object into the tag table held by 𝑡𝑎𝑏𝑙𝑒𝐼𝑂 .
These F-primitives are interconnected through a shared primitive variable 𝑠𝑡𝑚𝑡 . Specifically, the

variable 𝑠𝑡𝑚𝑡 corresponds to the JDBC statement responsible for saving the Tag object, coordinating
the entire process. It is created in 𝑁𝑒𝑤𝑆𝑡𝑚𝑡𝐵𝑦𝐸𝑛𝑡𝑖𝑡𝑦𝑇𝑦𝑝𝑒 , its parameter fields are initialized in
𝐼𝑛𝑖𝑡𝑆𝑡𝑚𝑡𝐵𝑦𝐸𝑛𝑡𝑖𝑡𝑦, and its execution is modeled in 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑆𝑡𝑚𝑡 primitives.

Primitive Handling. DBridge processes these four primitives step by step to construct the Java-
to-database value flow, in conjunction with their handling presented in Sections 5.2 and 5.3.
(1) Handling 𝑁𝑒𝑤𝑆𝑡𝑚𝑡𝐵𝑦𝐸𝑛𝑡𝑖𝑡𝑦𝑇𝑦𝑝𝑒 ⟨"Tag.class"𝐼 , "INSERT"𝐼 , 𝑠𝑡𝑚𝑡𝑂 ⟩ : DBridge creates a JDBC

statement object for the variable 𝑠𝑡𝑚𝑡𝑂 , and assigns the J-SQL statement INSERT INTO tag
(name) VALUES (?) to its 𝑠𝑞𝑙 field. This J-SQL is generated based on the mapping between the
Tag class and the tag table.

(2) Handling 𝐼𝑛𝑖𝑡𝑆𝑡𝑚𝑡𝐵𝑦𝐸𝑛𝑡𝑖𝑡𝑦⟨𝑠𝑡𝑚𝑡 𝐼𝑂 , 𝑒𝑛𝑡𝑖𝑡𝑦𝐼 ⟩: DBridge extracts the name field of the Tag object
pointed to by 𝑒𝑛𝑡𝑖𝑡𝑦𝐼 and propagates its points-to set to the first parameter of the JDBC statement
object pointed to by 𝑠𝑡𝑚𝑡 𝐼𝑂 .

(3) Handling 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑆𝑡𝑚𝑡 ⟨𝑠𝑡𝑚𝑡 𝐼 , 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡𝑂 ⟩: Based on the J-SQL encapsulated in the JDBC state-
ment object pointed to by 𝑠𝑡𝑚𝑡 𝐼 , DBridge generates the following SQL primitive: 𝑖𝑛𝑠𝑒𝑟𝑡 ⟨𝑡𝑎𝑏𝑙𝑒𝐼𝑂 ,
"name"𝐼 , "?1"𝐼 , 𝑝𝑎𝑟𝑎𝑚𝐼 ⟩. Here, the variable 𝑡𝑎𝑏𝑙𝑒𝐼𝑂 points to the tag table object, while the
string "name"𝐼 denotes the column to be inserted. The parameter expression "?1"𝐼 indicates
that the "name"𝐼 column receives data from the first parameter, i.e., the variable 𝑝𝑎𝑟𝑎𝑚𝐼 . It’s
important to note that when constructing this 𝑖𝑛𝑠𝑒𝑟𝑡 primitive, DBridge propagates the points-to
set of the first parameter carried by the JDBC statement object, which originates from the name
field of the Tag object, to 𝑝𝑎𝑟𝑎𝑚𝐼 . Additionally, the execution result of this JDBC statement is
stored in 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡𝑂 in the form of a ResultSet object.

(4) Handling 𝑖𝑛𝑠𝑒𝑟𝑡 ⟨𝑡𝑎𝑏𝑙𝑒𝐼𝑂 , "name"𝐼 , "?1"𝐼 , 𝑝𝑎𝑟𝑎𝑚𝐼 ⟩: DBridge first creates a row object and inserts
it into the tag table object pointed to by 𝑡𝑎𝑏𝑙𝑒𝐼𝑂 . Subsequently, it initializes the row object
by propagating the points-to set of 𝑝𝑎𝑟𝑎𝑚𝐼—which originates from the name field of the tag
object—to the row object’s name column.
Through the handling of these four primitives, DBridge constructs a Java-to-database value flow,

where the name from the Tag object flows through the first parameter of the JDBC statement, into
the SQL statement, and ultimately into the tag table.
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6 Evaluation
We evaluate DBridge’s effectiveness by conducting the following research questions.
RQ1. How does DBridge perform on DB-Micro, the micro-benchmark suite for evaluating static

analysis of Java-database interactions?
RQ2. How does DBridge perform on real-world database-backed apps in terms of soundness,

precision, and efficiency?
RQ3. How does DBridge compare to the state-of-the-art in recognizing SQL statements from

database access API calls, a fundamental task in static analysis for database-backed apps?
To further assess DBridge’s practical value as a foundational analysis tool providing comprehensive

value flow information for database-backed apps, we evaluate its support for client analyses:
RQ4. Can DBridge support its security clients—Stored XSS analysis and horizontal broken access

control analysis—in detecting real vulnerabilities in real-world database-backed apps?
RQ5. Can DBridge assist its program understanding client, an impact analysis for database schema

changes, in identifying affected program sites—a critical task in database management?
We implement DBridge on top of Tai-e [40], a state-of-the-art static analysis framework for

Java that offers powerful and highly extensible pointer analysis, which significantly facilitate the
development of our analysis. All experiments are conducted on a machine with an Intel i7 2.6GHz
CPU and 16GB of memory. Note that, while constructing Java-to-database value flows (as defined
in Section 1) is crucial, no prior work can achieve this. So there is no comparable work in RQ1 and
RQ2 where such value flows are required.

6.1 RQ1. The Effectiveness of DBridge on DB-Micro
Asmentioned in Section 3, we constructed DB-Micro, which comprises 824 test cases, to comprehen-
sively evaluate the static analyzer’s ability to handle the complexity and diversity of Java-database
interactions. Each test case in DB-Micro is accompanied by a ground truth that represents its
runtime Java-to-database value flows. We evaluate DBridge by comparing the Java-to-database
value flows it captures against this ground truth, considering a test case successful only if the static
analysis result precisely matches the runtime value flows.

824
Test Cases

DB-Micro
Benchmark Suite

JDBC Bench.SQL Bench. JPA Bench. Spring Data JPA Bench.

0%

18/18 (100%)

270/324 (83.3%)

350/385 (90.9%)

83/97 (85.6%)

Pass Rate of
50% 100%

SQL Benchmark – Select
(case type and number)

constant_value 4 subquery 1
column_value 3 group_having 4
function_value 2 alias 2
unary_value 2 where_logical 3
nested_value 1 where_in 1
math_value 4 where_like 2
compare_value 4 where_join 5

TOTAL 38

DBridgeAnalysis

Fig. 5. DB-Micro benchmark and DBridge’s overall results.

DBridge passed 721 out of 824
test cases across the four micro-
benchmarks, a very promising result
given the complexity of SQL, database
frameworks, and the strict evaluation
criteria. However, DBridge does not
fully support certain features due to
their inherent complexity. For instance,
some SQL cases combining SELECT,
WHERE, and LIKE clauses involve com-
plex regular expressions, and some UP-
DATE cases require evaluating intricate
arithmetic functions. In JPA, Criteria
Queries present challenges due to the
numerous API calls needed for even a
single criterion. DBridge can handle all

types of framework statements except for Criteria Query in JPA and Spring Data JPA. Further
details on the passed and failed test cases are available in the supplementary material. We plan to
extend DBridge’s capabilities to address these limitations in future work.
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6.2 RQ2. Effectiveness of DBridge in Building Real-World Java-to-Database Value Flows
6.2.1 Experimental Setups. We selected 10 popular Java web apps from GitHub as real-world
benchmarks. The selection criteria are based on popularity, indicated by high stars on GitHub or
frequent citations in related research. For the former, the apps have around 1,000 stars or more such
as eladmin (21.5k), favorites-web (4.8k), SpringBlog (1.6k), etc. For the latter, the apps are frequently
referenced in related works such as [8–10, 21]. These codebases (excluding libraries) range from 2K
to 129K lines of code and cover various business domains, such as blogs, e-commerce, and CMS.
Their popularity and diversity make them exemplary for evaluating DBridge in the real world.

To evaluate DBridge’s capability in constructing Java-to-database value flows through static
analysis, we need to collect executed value flows covering a broad range of Java-to-database
interactions as metrics for measuring soundness and precision. However, the original test cases
provided by the app developers were limited, capturing only a fraction of interactions. To address
this, we expanded the test cases to cover a wider range of Java-to-database interactions.

Collecting all dynamic value flows triggered by the test cases (starting and ending at all possible
variable combinations) for comparison with static analysis is impractical. Instead, we focus on a
set of meaningful dynamic flows: critical parameters of various web request APIs, denoted as Req.,
which can inject commands or receive sensitive inputs, and response variables of various response
APIs, denoted as Resp., which can receive data from the database. The dynamic flows of interest
start from these Req. and end at these Resp., traversing realistic app code, database framework API
calls, and SQL executions. If a static analysis can detect these dynamic flows—i.e., determine that
the values from a Req. reaches a Resp.—it demonstrates the ability of the static analysis to abstract
and over-approximates these complex Java-to-database interactions.

6.2.2 Understanding the Results. Table 1 presents DBridge’s results in constructing Java-to-database
value flows, using the real-world apps and setups described earlier. In the table, #Req., #Resp.,
and #Dyn., represent the number of request parameters, response variables, and dynamic flows,
respectively. #Static represents the number of flows identified by static analysis, while #Match
shows the number of static flows that coincide with dynamic flows.

Recall experiments measure the soundness of static analysis [8, 18, 25], showing how many true
dynamic flows are detected. A higher recall rate (#Match/#Dyn.) indicates better soundness. A
web app often has multiple entry points that can be triggered by different test cases at runtime.
In traditional recall experiments, static analysis analyzes an app from all identified entry points,
independent of specific test cases. If a static analysis reports a value flow not found in the dynamic
flows, it cannot be considered false, as it may still be valid under other test cases not yet provided.

To assess DBridge’s precision, we conducted a precision experiment, shown on the right side of
Table 1. In this approach, static analysis is performed for each test case individually, starting only
from the entry points triggered by that test case. For instance, with 30 test cases, static analysis is
applied 30 times. Each analysis is limited to the runtime behavior of the specific test case, allowing a
value flow to be marked as false if it is not executed with the current input (test case). This actually
provides a stricter measure of precision. Note that in the precision experiment, #Dyn. is higher than
in the recall experiment because it aggregates counts across each test case run. Different test cases
may trigger the same req.-resp. pair, which is counted multiple times in the precision experiment.
Similarly, #Static and #Match in the precision experiment are computed for each static analysis run
and then summed (as shown in the table). With this context, we now detail DBridge’s soundness,
precision, and efficiency.

Soundness (Recall). As discussed in Section 2.2, the complexity and interdependence of Java-to-
database interactions make static analysis challenging. DBridge demonstrates strong soundness,
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Table 1. DBridge’s results in building Java-to-database value flows for real-world applications.

Application Time
(s) #Req. #Resp. Recall Precision

#Dyn. #Static #Match Recall #Dyn. #Static #Match Prec.
eladmin 326 24 48 93 135 72 77% 175 254 120 47%
mblog 153 21 22 59 60 53 90% 93 147 87 59%

SpringBlog 183 12 19 105 123 105 100% 115 127 115 91%
JavaQuarkBBS 225 24 42 96 96 93 97% 142 202 139 69%
petclinic-JPA 72 15 17 44 60 44 100% 56 68 56 82%

petclinic 86 15 17 44 60 44 100% 56 68 56 82%
favorites-web 210 24 33 27 30 18 67% 27 30 21 70%
OnlineMall 230 24 41 107 123 105 98% 116 126 114 90%

wallride 273 21 47 95 111 95 100% 108 132 108 82%
bbs-pro 395 24 41 70 57 50 71% 81 84 61 73%

AVERAGE 215 20 33 74 86 68 90% 97 124 88 75%

with an average recall rate of 90%. This success is due to DBridge’s comprehensive and robust
analysis of Java-to-database interactions, including Spring IoC in app code, various complex database
access APIs in JPA, Spring Data JPA, and JDBC, as well as SQL syntax and semantics incorporated
with database abstraction. However, DBridge still struggles with certain interactions. For example,
in the bbs-pro app, the recall rate drops due to the use of string concatenation to construct SQL
queries—a practice that is relatively uncommon in modern apps and not well supported by DBridge.
Similarly, in the eladmin and favorites-web apps, the recall rate is lower because some query
conditions are derived from complex calculations, such as SQL functions and file parsing, which
DBridge’s current implementation cannot handle.

Precision. DBridge achieves good precision, with an average rate of 75%, which is relatively high
for static analysis of complex apps. This success is mainly due to DBridge’s careful analysis of
each key phase in Java-to-database interactions. First, for app code, DBridge employs advanced
pointer analysis with selective context-sensitivity [17, 34, 41], applying deep contexts to the app
code and precisely modeling the Spring framework features. Second, for database frameworks,
DBridge creates framework primitives by using pointer analysis to precisely capture the relation-
ships between entity objects and their persistence states, while accurately resolving the relevant
parameters for database access API calls. Third, for SQL and database, DBridge accurately models
the database structure and uses this foundation to model SQL executions as precisely as possible.
These strategies together contribute to DBridge’s high precision. A flaw in any of these areas
may significantly reduce precision. For example, treating database tables as collections of columns
without distinguishing rows drops the average precision to 29%.

Despite achieving good average precision, some apps experience noticeable precision losses due
to certain factors. For example, while selective context-sensitive pointer analysis is used for app code,
certain JDK code that can affect Java-to-database value flows is still analyzed context-insensitively
to balance efficiency. This can cause value flows in these library classes to merge. Additionally,
the complexity of database frameworks presents challenges in achieving high precision. While
we make efforts to model core database mechanisms accurately, some features remain difficult to
handle precisely. For instance, Spring Data JPA’s Criteria Query, used in apps like eladmin and
wallride, dynamically constructs SQL statements. To maintain soundness, DBridge does not analyze
the WHERE clause of the Criteria Query APIs. Attempting to do so would force DBridge to include
all possible query conditions in the SELECT statement, leading to the retrieval of fewer rows than
expected at runtime because some query conditions might be omitted due to their conditional logic.
While this approach is more sound, it reduces precision due to over-approximation.
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Efficiency. DBridge exhibits rapid analysis speeds, completing each app analysis in under 7
minutes, including the largest, bbs-pro, which contains 129k lines of app code and depends on 152
libraries. This efficiency is mainly due to DBridge’s differentiated analysis strategy: For developer-
written app code, critical to analysis precision, DBridge employs deep context-sensitive pointer
analysis. This portion of the code represents a small fraction of the total codebase, and the number
of call paths for each app method is limited. Therefore, performing deep context-sensitive pointer
analysis on this code does not result in an excessively large call graph and pointer flow graph. For
most library code, DBridge applies fast context-insensitive pointer analysis, except for precision-
critical JDK methods, such as those related to collections [7]. Additionally, DBridge deeply models
complex database framework API calls, including the further calls these APIs make to interact
with databases, effectively bypassing large portions of database-related code. This comprehensive
modeling significantly reduces the analysis workload and further accelerates the overall process.

6.3 RQ3. Effectiveness of DBridge in Identifying SQL Statements
Statically identifying the SQL statements executed at runtime for a specific call site of a database
framework API (e.g., find(id) in line 18 of Fig. 2) is a fundamental and critical task for optimizing
and maintaining database-backed apps [15, 16, 21, 28, 32, 45]. Most research in static analysis
focuses on this challenge, but to our knowledge, no existing approach captures Java-to-database
value flows like DBridge does. Current methods are limited in recognizing SQL statements due
to the diversity and complexity of database frameworks, as well as overlooking Java-to-database
value flows, limitations that DBridge overcomes. Below, we compare DBridge with SLocator [21],
the state-of-the-art (most advanced) open-source approach for SQL identification.
Table 2. Evaluation results of DBridge’s and SLocator’s
capabilities in identifying SQL statements.

Application #Dyn. 
SQL

DBridge SLocator
#identified 
(#matched) Cov. #identified 

(#matched) Cov.
eladmin 50 83 (37) 74% 7 (1) 2%
mblog 36 60 (26) 72% 15 (6) 17%

SpringBlog 20 22 (19) 95% 1 (1) 5%
JavaQuarkBBS 34 42 (22) 65% 4 (1) 3%
petclinic-JPA 10 16 (10) 100% 17 (6) 60%

petclinic 10 14 (10) 100% 3 (2) 20%
favorites-web 29 50 (22) 76% 26 (8) 28%
OnlineMall 25 31 (25) 100% 2 (1) 4%

wallride 51 83 (21) 41% 23 (3) 6%
bbs-pro 68 402 (55) 81% 0 (0) 0%

AVERAGE 33 80 (25) 80% 10 (3) 15%

Table 2 shows the results, showing that
DBridge significantly outperforms SLocator
in identifying SQL statements, with an av-
erage coverage rate (denoted as Cov.) of
80% compared to SLocator’s 15%. This per-
formance gap is due to DBridge’s compre-
hensive modeling of three key factors in-
fluencing SQL generation (see Section 4):
API types, relationships between entity ob-
jects, and entity states. In contrast, SLocator
struggles with these factors. First, modern
database frameworks support a variety of
query types. While SLocator handles more
types than other approaches, it still lacks
support for several commonly used ones. For
example, it only supports annotation-based

queries for Spring Data JPA, leaving other query types unaddressed. Second, DBridge models the
relationships between entity objects, which are crucial for identifying cascade SQL statements.
SLocator, however, provides limited support for how these relationships impact cascade opera-
tions. Finally, SLocator does not model entity states, which prevents it from recognizing UPDATE
statements in JPA and Spring Data JPA APIs.

Regarding precision, we calculated it using the same approach as the second recall experiment in
Table 1. DBridge’s soundness, reflected in the coverage rate (recall), is much higher than SLocator’s
(80% vs. 15%), making direct precision comparisons less meaningful. For example, in bbs-pro
(Table 2), there are 68 actual SQL statements, and SLocator identified 0 and 0 matched, but the
precision is 100%. In this context, DBridge has an average precision of 54%, and SLocator has 85%.
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While comparing precision between DBridge and SLocator is less meaningful, we can explain
why DBridge achieves lower recall and precision for SQL identification compared to value flow
construction in RQ2. This is mainly due to strict string-matching criteria. Semantically equivalent
SQL statements often fail to match because of syntax differences. For example, a single SELECT
query with joins (e.g., select * from a inner join b on a.id = b.id where a.id = 1)
might be split into sub-queries (e.g., select * from a where id = 1 and select * from b
where id = 1). DBridge identifies the latter, while the actual query at runtime is the former. These
syntax mismatches reduce recall and precision in SQL identification but do not affect value flow
construction, as the semantics remain equivalent.

6.4 RQ4. Can DBridge Assist in Security Analysis for Database-backed Apps?
To examine the practical utility of DBridge as a foundational tool for constructing comprehensive
value flows in database-backed apps, we develop two DBridge-based clients for database-backed
security analysis: a Stored XSS vulnerability analysis and a horizontal broken access control vulnera-
bility analysis (HBAC Vulnerability analysis). To our knowledge, while such second-order security
analyses exist for PHP (Section 7), no current static analysis can detect these database-related
vulnerabilities in modern Java apps due to the lack of resolved Java-to-database value flows.

6.4.1 Stored XSS Vulnerability Analysis. Stored Cross-Site Scripting (XSS) vulnerabilities are critical
injection flaws where attackers embed malicious scripts in a website’s database, executing when
users visit the affected page, posing serious security risks. We evaluate Stored XSS analysis on our
real-world apps, with results in Table 3. “N/A” indicates that the vulnerability is not applicable to
the app due to its nature. Each identified vulnerability was thoroughly examined, and all test cases
that demonstrate the attacks have been made available in the artifact [19].

Table 3. DBridge’s results for security.

Application
Stored XSS 
Analysis

HBAC 
Analysis

#identified
(#verified)

#identified 
(#verified)

eladmin N/A N/A
mblog 9 (2) 4 (0)

SpringBlog 15 (6) 3 (2)
JavaQuarkBBS 19 (19) 0 (0)
petclinic-JPA N/A N/A

petclinic N/A N/A
favorites-web 62 (7) 0 (0)
OnlineMall 4 (0) 1 (1)

wallride 25 (0) N/A
bbs-pro 2 (0) 0 (0)
TOTAL 136 (34) 8 (3)

Results. DBridge identified 34 real Stored XSS attack vulner-
abilities across four database-backed apps, 30 of which were
previously undiscovered. These vulnerabilities are dangerous
as they allow attackers to execute arbitrary malicious code
in users’ browsers (e.g., cookie leakage, redirection to mali-
cious websites). All of them were confirmed by generating
test cases that successfully triggered the attacks in real-world
settings. These vulnerabilities primarily stem from developers’
unawareness that certain user inputs are stored in the data-
base and later used for webpage rendering, leading to missed
security checks. At the time of writing, seven of these vulnera-
bilities have been confirmed by the app developers as present
and worth fixing. As shown in Table 3, DBridge also identified
some false positives, mainly due to imprecise sink selection.
In practice, only sinks related to rich text rendering are likely
to cause an attack. However, due to DBridge’s current lack of

front-end page analysis capabilities, it cannot precisely identify these specific sinks.

A Case Study. We present a Stored XSS vulnerability identified by DBridge in favorites-web (4.8k
stars, 1.7k forks on GitHub), an app for managing and sharing favorite websites and resources.
The vulnerability is exploited as follows: A malicious user shares a resource on the website, and
when a victim bookmarks it and leaves a comment, the attacker replies with a script embedded in
their response. When the victim views the reply, the script is executed. Exploiting this vulnerability
requires six Web API calls, including user creation, resource sharing, bookmarking, commenting,
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replying, and viewing the reply. Parameters between these calls are tightly coupled; for example,
the bookmarking API requires the resource ID to match the ID of the resource originally shared by
the attacker. These interdependencies make the vulnerability difficult to detect through dynamic
approaches like testing and fuzzing. Using DBridge’s reported results, we successfully exploited
this vulnerability—and five others—in the app by interacting with its public website.

6.4.2 HBAC Vulnerability Analysis. Horizontal Broken Access Control (HBAC) vulnerabilities allow
malicious users to access or manipulate other users’ private data. Similar to private information
leak analysis, an HBAC vulnerability occurs when high-confidentiality (High) data flows to a
low-confidentiality (Low) sink [4]. The key difference is that database interactions propagate
the vulnerability. High-confidentiality data is stored in the database via operations like save, and
attackers retrieve it using actions like update and query, exploiting publicly accessible data. This
leads to High data being exposed at a Low site (e.g., through an HTTP response).

Results. We evaluated the HBAC analysis on our real-world apps, with results shown in the
HBAC analysis columns of Table 3. “N/A” means no experiments were conducted on these apps
due to the absence of sensitive data. Overall, DBridge identified 8 vulnerabilities across five apps,
three of which were confirmed as true and previously undiscovered. These vulnerabilities can leak
crucial user privacy information, such as detailed records of products purchased by users. The
verification process was the same as for the Stored XSS analysis, and we generated test cases to
trigger the three real HBAC vulnerabilities, which are included in the artifact. In the mblog app, all
identified vulnerabilities were false positives, caused by the app’s use of Hibernate’s aspect-oriented
programming to protect sensitive data, a feature that DBridge currently does not support.

A Case Study. We present an HBAC vulnerability detected in the SpringBlog app (1.6k stars on
GitHub), a blogging platform that allows users to create public or private posts, with private posts
containing sensitive information. This vulnerability allows attackers to exploit public data within
the app to access private posts. Here’s how the vulnerability works: the app provides a Web API,
showPost, to retrieve posts via a permalink. When the permalink is used as a query condition, the
app generates an SQL query that restricts the post’s status to public (i.e., only public post can be
retrieved). However, if no post is found, the app throws an exception. In the exception handling, the
permalink is then used as the post’s ID for a second query, but this query does not enforce the public
status restriction. This allows attackers to enumerate post IDs and use them as permalinks to access
private posts. In our analysis, DBridge identified that private data in the content field of a post
object flows to the content column of the post table and is also returned by the showPost call,
thereby detecting the vulnerability. We deployed SpringBlog and generated test cases to successfully
exploit this vulnerability, gaining access to confidential information stored in the database.

6.5 RQ5. Can DBridge Assist in Program Understanding for Database-backed Apps?
Impact analysis of database schema changes is a crucial task for understanding and maintaining
database-backed apps. When programmers modify the database schema (e.g., altering the data type
of a table column) via database management utilities, impact analysis automates the identification
of affected app code, particularly the call sites of relevant database access APIs (called database
access sites). This enables focused retesting and debugging of the impacted code areas [13, 26, 27].
In impact analysis, when a table column’s data type is modified, DBridge identifies the SQL

statements that involve the modified column and marks the corresponding database access sites.
It also analyzes the code that maps table data to objects to identify the class field related to the
modified column. DBridge then tracks the value flow of this field to locate additional impacted
database access sites, often involving complex Java-to-database value flows.
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Existing static analysis approaches for schema change impact analysis [26, 27] have notable
limitations. They are unable to construct value flows across the full spectrum of Java-to-database
interactions, and can identify only a very limited subset of SQL statements due to a considerable
lack of support for various query types and database framework features [21]. Unfortunately, a
direct comparison with these tools is not feasible as they are not open-source.
Table 4. DBridge’s results for
program understanding.

Application
Impact 

Analysis
#real #identified

(#matched) 
eladmin 22 23 (21)
mblog 13 11 (11)

SpringBlog 23 23 (23)
JavaQuarkBBS 10 10 (10)
petclinic-JPA 7 7 (7)

petclinic 7 7 (7)
favorites-web 29 29 (29)
OnlineMall 10 10 (9)

wallride 63 59 (59)
bbs-pro 11 11 (10)
TOTAL 195 190 (186)

We implement the impact analysis based on DBridge, and eval-
uated it on our real-world apps, by selecting the most complex
database table and randomly choosing three columns as the tar-
gets for simulated changes. We kept it to three columns because
manually verifying which database access sites are affected by the
changes is highly time-consuming, particularly when checking if
the parameters of a site are impacted by the changes. The results
are presented in Table 4. The “#real” column represents the number
of runtime-invoked database access sites impacted by the simu-
lated changes. Additionally, we manually inspected all database
access sites not covered by dynamic testing but potentially affected
by the changes. The “#identified” column shows the number of
affected sites identified by DBridge, while the “#matched” column
(in parentheses) indicates how many of these identified sites were
actually affected, demonstrating an average detection rate of 95%.

This high detection rate is largely due to DBridge’s comprehen-
sive building of Java-to-database value flows and its ability to model the semantics of various
database framework APIs and SQL. As shown in the table, DBridge also exhibits good precision, as
the client only needs column-level precision (as schema changes are typically column-based [26, 27]).
Row-level precision—resolving the WHERE clause of SQL—is not necessary here. Additionally,
DBridge only needs to identify the affected sites, without distinguishing the specific flows impacting
those sites. These factors together contribute to DBridge’s high precision in this client.
Lastly, we did not specifically discuss the efficiency of these three clients in RQ4 and RQ5, as

DBridge performed similarly well in terms of speed, as observed in the fundamental analysis
experiments of RQ2. The maximum analysis time across the three clients was seven minutes, and
the primary reasons for DBridge’s efficiency have already been explained in Section 6.2.

7 Related Work
Fundamental Analysis for Database-Backed Apps. The analysis of database-backed apps involves

resolving both the internal behavior of the app and its interactions with the database. Regarding
the app’s internal implementation, modern Java apps often rely on frameworks such as Spring
and JavaEE, particularly for web development. Several studies have explored different approaches
to address the challenges posed by these frameworks [7, 8, 36, 42–44]. In DBridge, we apply an
approach inspired by JackEE [7] to handle the complexities of the Spring framework. However,
none of these works address interactions between Java apps and databases. These works are limited
to analyzing behaviors within the Java app alone and lack the ability to analyze the database
framework, SQL, or database itself, preventing the construction of any Java-to-database value flows.

Existing research on the foundational analysis of Java-to-database interactions primarily centers
on statically identifying SQL statements to facilitate optimization and maintenance. SLocator [21]
is the state-of-the-art approach in this area. In our RQ3 experiment, we compare DBridge with
SLocator in terms of SQL identification, showing that DBridge significantly outperforms SLocator.
Other SQL identification approaches [15, 16, 28, 32, 45] support noticeably fewer database access
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APIs than SLocator, limiting their SQL identification capabilities. Notably, none of these approaches
construct Java-to-database value flows like DBridge, restricting them to a narrow set of clients.
In other programming languages like C# and PHP, some studies have attempted to capture

app-to-database value flows [11, 12, 39]. However, these studies feature significantly simpler
app-to-database interactions compared to those we address, which necessitates fundamentally
different approaches. Firstly, the related studies primarily focused on SQL at a syntactic level, only
considering table and column names involved in a single SQL statement. In contrast, DBridge
delves into the semantics of SQL, accounting for various SQL clauses, predicates, expressions, and
aliases. This level of depth led us to propose a dedicated Database Model and introduce diverse
SQL primitives. Secondly, the database frameworks we handle are far more complex than those
considered in previous work. They only concentrate on simpler JDBC-like database frameworks
(e.g., ADO.NET for C#), whereas we further address intricate ORM frameworks like Hibernate and
Spring Data JPA. These frameworks offer a wide array of queries, entity relationships, mappings,
and persistent states. To address the complexity, we introduced a set of F-primitives. Note that
these framework and SQL primitives go beyond simple representations of framework APIs and
SQL. For instance, they incorporate newly crafted parameters that are absent in existing framework
APIs and SQL, to facilitate pointer analysis. Moreover, designing these primitives required a careful
balance of simplicity, diversity, and suitability for pointer analysis. Considering all these factors,
we have developed the first end-to-end pointer analysis for Java database-backed apps.

Static Analysis Clients for Database-Backed Apps. In security analysis, Dahse et al. [11] and Su
et al. [39] identify second-order injection vulnerabilities, such as Stored XSS, in PHP programs.
However, the effectiveness of these analyses is constrained by the limitations of their underlying
foundational analyses, which have been detailed in the preceding paragraph (the third paragraph of
the “Fundamental Analysis” section above). As shown in our RQ4 experiment, DBridge implements
a Stored XSS vulnerability analysis based on its robust ability to construct Java-to-database value
flows, enabling it to detect a set of real vulnerabilities that were previously undiscovered.
SQL injection vulnerability analysis is another subject of security research [22, 23, 35, 46]. We

believe that DBridge’s capabilities could further enhance the effectiveness of these analyses, with
tool development on top of DBridge planned for future work.
In program understanding, several studies have focused on database-backed apps, including

impact analysis [26, 27], code smells [10, 31], and anti-patterns analysis [9, 24]. Among these,
DBridge implements and evaluates impact analysis as a representative client, achieving promising
results (see the RQ5 experiment). Unfortunately, since these studies are not open-source, a direct
comparison is not possible. However, we discuss their methodological differences in Section 6.5.

8 Conclusion
We introduce DBridge, the first pointer analysis specifically designed for Java database-backed apps,
capable of statically constructing comprehensive Java-to-database value flows. By integrating Java
app code analysis, database access specification modeling, SQL analysis, and database abstraction
within a unified pointer analysis, DBridge addresses a critical gap in static analysis approaches
that have struggled to capture the full complexity of Java-database interactions. Through extensive
evaluation on the DB-Micro micro-benchmark suite and real-world apps, we demonstrate DBridge’s
robustness and effectiveness, achieving high recall and precision in value flow construction, while
outperforming state-of-the-art tools in SQL statement detection. Moreover, we validate DBridge’s
practical utility by developing client analyses that uncover previously undetected real vulnerabilities
and showcase its potential for facilitating program understanding tasks. The open-sourcing of
DBridge and DB-Micro offers a foundation for further research and development. We believe our
work will make a meaningful contribution to advancing static analysis for database-backed apps.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 204. Publication date: June 2025.



Pointer Analysis for Database-Backed Applications 204:23

Acknowledgments
Wewould like to thank the anonymous reviewers for their helpful comments. This work is supported
in part by National Key R&D Program of China under Grant No. 2023YFB4503804, National Natural
Science Foundation of China under Grant Nos. 62402210, 62025202, the Frontier Technologies R&D
Program of Jiangsu under Grant No. BF2024059, the Leading-edge Technology Program of Jiangsu
Natural Science Foundation under Grant No. BK20202001, and the Collaborative Innovation Center
of Novel Software Technology and Industrialization, Jiangsu, China. Tian Tan, the co-corresponding
author, is also supported by Xiaomi Foundation.

Data-Availability Statement
We have provided an artifact [19] to reproduce all experimental results presented in Section 6.
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experiments, as well as detailed documentation, scripts, and demonstration videos for reproducing
the vulnerabilities revealed by DBridge. The artifact is available at https://doi.org/10.5281/zenodo.
15171408. To reproduce the results, please refer to the instructions provided in the accompanying
README.pdf document within the artifact.
In addition, we have provided supplementary material [20] that formalizes all core primitives
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