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Context Sensitivity without Contexts

A Cut-Shortcut Approach to Fast and Precise Pointer Analysis

WENJIE MA∗ and SHENGYUAN YANG∗, Nanjing University, China
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Over the past decades, context sensitivity has been considered as one of the most effective ideas for improving

the precision of pointer analysis for Java. Different from the extremely fast context-insensitivity approach,

context sensitivity requires every program method to be analyzed under different contexts for separating

the static abstractions of different dynamic instantiations of the method’s variables and heap objects, and

thus reducing spurious object flows introduced by method calls. However, despite great precision benefits,

as each method is equivalently cloned and analyzed under each context, context sensitivity brings heavy

efficiency costs. Recently, numerous selective context-sensitive approaches have been put forth for scaling

pointer analysis to large and complex Java programs by applying contexts only to the selected methods

while analyzing the remaining ones context-insensitively; however, because the selective approaches do not

fundamentally alter the primary methodology of context sensitivity (and do not thus remove its efficiency

bottleneck), they produce much improved but still limited results.

In this work, we present a fundamentally different approach called Cut-Shortcut for fast and precise

pointer analysis for Java. Its insight is simple: the main effect of cloning methods under different contexts is to

filter spurious object flows that have been merged inside a callee method; from the view of a typical pointer

flow graph (PFG), such effect can be simulated by cutting off (Cut) the edges that introduce precision loss to

certain pointers and adding Shortcut edges directly from source pointers to the target ones circumventing the

method on PFG. As a result, we can achieve the effect of context sensitivity without contexts. We identify three

general program patterns and develop algorithms based on them to safely cut off and add shortcut edges on PFG,

formalize them and formally prove the soundness. To comprehensively validate Cut-Shortcut’s effectiveness,

we implement two versions of Cut-Shortcut for two state-of-the-art pointer analysis frameworks for Java,

one in Datalog for the declarative Doop and the other in Java for the imperative Tai-e, and we consider all

the large and complex programs used in recent literatures that meet the experimental requirements. The

evaluation results are extremely promising: Cut-Shortcut is even able to run faster than context insensitivity

for most evaluated programs while obtaining high precision that is comparable to context sensitivity (if

scalable) in both frameworks. This is for the first time that we have been able to achieve such a good efficiency

and precision trade-off for those hard-to-analyze programs, and we hope Cut-Shortcut could offer new

perspectives for developing more effective pointer analysis for Java in the future.
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1 INTRODUCTION

Pointer analysis is a family of static analysis techniques aimed at computing a set of abstract values
that a program pointer may point to during program execution. The result of pointer analysis lays
the groundwork for a wide range of static analysis applications such as bug detection [Cai et al. 2021;
Chandra et al. 2009; Naik et al. 2006], security analysis [Arzt et al. 2014; Grech and Smaragdakis
2017], program optimization [Sridharan and Bodík 2006; Zhang et al. 2013], verification [Fink et al.
2008; Pradel et al. 2012], and understanding [Li et al. 2016; Sridharan et al. 2007]. Hence, it is not
surprising that researchers have invested a substantial amount of effort in trying to build fast and
precise algorithms for pointer analysis in the past decades [Smaragdakis and Balatsouras 2015].
Andersen-style pointer analysis [Andersen 1994] has been considered as the standard context-

insensitive pointer analysis for Java [Smaragdakis and Balatsouras 2015; Sridharan et al. 2013].
We can see it as an iterative algorithm applied on a typical pointer flow graph (PFG) [Li et al.
2018a, 2020a; Tonella and Potrich 2005; WALA 2006] where nodes represent program pointers
(including variables and instance fields) and edges represent subset constraints between pointers’
points-to sets. During the analysis, abstracted objects are propagated along the edges of PFG. As the
context-insensitivity approach does not distinguish between different call sites of the same method,
incoming points-to sets are merged in callees; thus, it is extremely fast but with low precision.
For the sake of higher precision, context sensitivity is applied to pointer analysis. Basically, for

each method call (say c) to a callee (saym), all elements inm (like variables, instance fields and heap
objects) will be cloned and analyzed under a context related to certain program element (say e) that
distinguishes c from other calls; accordingly, different forms of context sensitivity are presented
like call-site sensitivity (if e is a call site) [Sharir and Pnueli 1981; Shivers 1991], object sensitivity (if
e is an allocation site) [Milanova et al. 2002, 2005], and type sensitivity (if e is a type) [Smaragdakis
et al. 2011]. As the object flows merged in the callees are separated under different contexts, the
spurious objects flows introduced by method calls can be filtered, thereby increasing the precision.
However, context sensitivity comes with heavy efficiency costs as the analysis has to compute and
maintain a huge number of context-sensitive intermediate results. As a result, context sensitivity,
e.g., the most widely used 2obj (short for object sensitivity with context length being two), still
fails to scale (cannot terminate in hours) for several complex programs in the standard DaCapo
benchmarks [Jeong et al. 2017; Lhoták and Hendren 2006; Li et al. 2018b].

To scale for large and complex programs, in recent years, plenty of selective context-sensitivity
approaches are proposed [Hassanshahi et al. 2017; Heo et al. 2017; Jeon et al. 2020; Jeong et al. 2017;
Li et al. 2018a,b, 2020a; Lu et al. 2021; Oh et al. 2014, 2015; Smaragdakis et al. 2014; Tan et al. 2021;Wei
and Ryder 2015]. Generally, they rely on a pre-analysis to select a set of methods that are critical to
improving precision but do not jeopardize scalability when analyzed under context sensitivity. Then
they only apply context sensitivity to those selected methods while analyzing the remaining ones
context-insensitively. Although selective context sensitivity significantly improves the scalability
of pointer analysis, its efficiency has not yet been fully unlocked as context sensitivity’s core
methodology has not been altered: we still have to spend potentially many computing resources
replicating a set of methods and analyzing the program elements in each of those methods separately
under different contexts, and once several of them threaten the scalability, the analysis runs the
risk of being very slow or even not scalable [Li et al. 2020a; Smaragdakis et al. 2014].
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In this work, we present a novel Cut-Shortcut approach to fundamentally change the status quo
where pointer analysis for Java primarily relies on context sensitivity to acquire higher precision.

Method. The key observation is that imprecision occurs for context insensitivity when object
flows are merged in a method< and then the merged flows go outside<, introducing imprecision.
Different from replicating a method< into multiple copies to distinguish object flows from different
call sites as context sensitivity does, our approach simulates context sensitivity’s effect by cutting

off the flows that introduce precision loss to certain pointers and adds the shortcut flows directly
from exact source pointers to the target ones circumventing method<. As a result, we can achieve
the effect of context sensitivity without applying contexts to<. To be more specific, Cut-Shortcut
does not need a pre-analysis and it just performs the context-insensitive pointer analysis algorithm
on a on-the-fly constructed graph PFG′ (#, �′), which can be seen as a graph transformed from
the original PFG(#, �), where # and � denote the sets of nodes and edges of PFG respectively,
and �′

= � \ {edges to cut off } ∪ {shortcut edges to add } (in other words, for the standard context-
insensitive analysis, only its PFG is changed to PFG′). Then we have two key questions to answer:

• Which edges to cut off? We cut off edges that may bring merged object flows inside a method
to somewhere outside (e.g., to the left-hand side variable of the call site which receives the
values of the return variables of the callee method). In other words, the mergence of object
flows itself often does not harm precision as long as the chaos is kept inside the method. The
main precision loss occurs when the merged object flows are propagated outside the method.

• Where to add shortcuts? We locate all the source nodes (say B) that precede the mergence of
object flows inside the callee, and then create new edges between B and the corresponding
target nodes of the cut edges, for deriving sound and precise analysis results.

Although the basic idea seems simple, it is both challenging to identify which edges to cut off and
where to add shortcuts. For the former, we need to identify edges that do great harm to precision
and estimate whether cutting them off is beneficial, which takes a lot of maneuvering. For the
latter, with some PFG edges cut off, if the added shortcuts can not capture all the necessary object
flow sources, soundness will be harmed. To ensure soundness, instead of attempting to tackle all
kinds of precision loss, in this work, we present three well-characterized program patterns that are
suitable to be handled by our approach and accountable for a large portion of precision loss.

Evaluation. We prove Cut-Shortcut’s soundness theoretically and further indirectly validate it
by a recall experiment; moreover, in order to comprehensively validate its effectiveness, we imple-
ment two versions of Cut-Shortcut for two state-of-the-art Java pointer analysis frameworks,
one in Datalog (≈100 Datalog rules) for the declarative Doop [Bravenboer and Smaragdakis 2009]
and the other in Java (≈2000 lines of code) for the imperative Tai-e [Tai-e 2022]. We consider all the
large and complex Java programs used in recent literature that meet the experimental requirement,
and compare Cut-Shortcut to context-insensitivity, conventional and selective context-sensitivity
approaches. The results are extremely promising: Cut-Shortcut is even able to run faster than context

insensitivity for most evaluated programs while obtaining high precision that is comparable to context

sensitivity (if scalable) in both frameworks. This is for the first time that we have been able to achieve
such a good efficiency and precision trade-off for those hard-to-analyze Java programs, and the
experimental results can be obtained using the accompanying artifact [Ma et al. 2023].

2 MOTIVATING EXAMPLE

We use the example in Figure 1 to illustrate the basic idea of Cut-Shortcut and show how it differs
from context insensitivity and context sensitivity for pointer analysis. Class Carton has a field
item and provides setItem() and getItem() to modify and retrieve the item value respectively.
In main(), two Item objects (>16, >21) are stored in the field item of two Carton objects (>15, >20)
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class Carton {

Item item;

void setItem(Item item){

this.item = item;

}

Item getItem() {

Item r = this.item;

return r;

}

}

class Item {}

// usage code

void main() {

Carton c1 = new Carton();//𝑜!"
Item item1 = new Item();//𝑜!#
c1.setItem(item1);

Item result1 = c1.getItem();

Carton c2 = new Carton();//𝑜$%
Item item2 = new Item();//𝑜$!
c2.setItem(item2);

Item result2 = c2.getItem();

}
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Fig. 1. An example to illustrate the basic idea of Cut-Shortcut.

via method setItem() and retrieved later via getItem() (we use >8 to denote the abstract heap
object allocated at line 8). After execution, result1 (result2) will only point to >16 (>21). Below
we explain how context insensitivity, sensitivity and our approach work for this example.

Context Insensitivity. Figure 1(0) shows the simplified PFG for the left code (an edge e of PFG
means what pointed to by the source pointer of e should flow to the target pointer of e). Since it
does not distinguish the two calls of setItem(), ?C (item1) (we use ?C (G) to denote G ’s points-to
set) and ?C (item2) will merge into ?C (item) (where item is the parameter at line 3), finally leading
to imprecise points-to sets for >15.item and >20.item by the store statement at line 4. Moreover,
two calls of getItem() are handled in the same manner, so that the merged objects ({>16, >21}) flow
to A by the load statement at line 7, rendering points-to sets of result1 and result2 imprecise.

Context Sensitivity. See Figure 1(0), the goal of context sensitivity is to separate the flows merged
at item (line 3) and r (line 7), and let >16 only flows to result1 and >21 to result2. To distinguish
the object flows from different call sites (namely, lines 17 and 22 for setItem(), and lines 18
and 23 for getItem()), every program element in setItem() (namely item and this.item) and
getItem() (namely this.item and r) should be qualified with a context and analyzed separately,
which is equivalently to analyze each of those methods twice under two different contexts. We
can anticipate that the cost of computing and maintaining context-sensitive information would be
very heavy in the real world, especially when the program is large or complex. Selective context
sensitivity alleviates this problem but does not fundamentally change it, as even a small set of
selected methods in a complex program may threaten scalability and blow up the analysis when
they are analyzed context-sensitively [Li et al. 2020a; Smaragdakis et al. 2014].

Cut-Shortcut. Figure 1(1) depicts how Cut-Shortcut works, where the arrows with crosses
represent the edges to cut off and the blue arrows indicate the shortcuts to add. The imprecision of
points-to sets of >15 .item and >20.item arises from edges item → >15.item and item → >20.item

(by the store statement at line 4), so we cut them off and add shortcuts from the precise source (i.e.,
item1 or item2) directly to the target node. Likewise, for nodes result1 and result2, we cut off
the edges starting from r which introduces imprecision and add shortcuts >15.item → result1

and >20.item → result2. Then on the modified PFG, by applying the same algorithm as context
insensitivity (propagating the points-to results along the PFG edges), we will eventually derive
points-to results as precise as context sensitivity for this example.

3 THE CUT-SHORTCUT APPROACH, INFORMALLY

We introduce the overall principle lying behind Cut-Shortcut (Section 3.1), on which the three
program patterns, field access pattern (Section 3.2), container access pattern (Section 3.3) and local
flow pattern (Section 3.4) are based.
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Fig. 2. The insight of Cut-Shortcut about which edges to cut off and where to add shortcut edges in PFG.

3.1 Overview

Briefly, Cut-Shortcut addresses the precision loss problem of context-insensitive pointer analysis
by adhering to a general principle: cut the edges that carry merged flows and add shortcuts as
substitution on PFG. To better unravel this principle, below we first clarify some terminologies.

Definition 3.1 (Local/Non-local pointers). If a pointer ? is method<’s local variable, then ? is local
to<, otherwise ? is non-local to<, i.e., ? is a variable declared outside< or is an instance field .

Definition 3.2 (Nebulous path, Entrance and Exit). If a path ? of PFG satisfies: (1) it starts with
a confluence where two (or more) pointers non-local to method <, merge into a pointer B local to
< (then B is the start node of ?), and (2) it ends with a divergence where a pointer 4 local to method

= (then 4 is the end node of ?) leads to two (or more) pointers non-local to =, then ? is a nebulous
path, with< being its Entrance and = being its Exit.

Take nebulous path item → >15.item → r in Figure 1(0) as an example. item and r are the start
and end nodes respectively of this path, and its Entrance is setItem() and Exit is getItem().
Path item (at line 3) is also nebulous, whose start and end nodes are the same, namely item.

Definition 3.3 (Target and Source pointers). Given a nebulous path ? , a Target pointer (Target
for short) is any successor of ?’s end node. In PFG, Target receives the merged points-to results
from Exit. A Source pointer (Source for short) is any predecessor of the start node of ? , whose
points-to results flow to an Entrance and contribute to the merged flows on PFG.

Now we explain the insight of our principle in Figure 2. p1, p2, target1, target2, source1 and
source2 are PFG nodes that represent program pointers (i.e., variables and instance fields) and >8
and > 9 represent two abstract heap objects. Assume that p1 and p2 are the start and end nodes of a
nebulous path, then source1 and source2 are recognized as Sources and target1 and target2 as
Targets. During dynamic execution, target1 only points to >8 that comes from source1; however,
its points-to set encompasses both >8 and > 9 in context insensitivity due to the nebulous path. In
many cases of real programs, precise points-to results can be easily identified by human intuition
with the comprehension of semantic information that are ignored by traditional pointer analysis.
Our approach actually does the same thing by leveraging certain semantic clues to better capture
the dynamic behavior of the program, so that we can effectively improve precision by cutting off
the edges leaving the nebulous path (e.g., p2→target1/target2) and adding shortcuts to connect
the precise Sources and Targets like source1→target1. Note that the operation “cutting off
edges” is relative to the original PFG, and in Cut-Shortcut, we do not cut off edges that are already
added to the PFG, since once an edge is added and then is removed later, it may introduce spurious
object flows along such edges. Thus when we build PFG, we never add edges that should be cut off.
For better precision, we try to find as many Targets as possible and cut off the edges leading

to them that bring precision loss, and for every Target, identify its corresponding Source(s) as
accurately as possible and create shortcuts between Sources and Targets. However, this is hard as
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the real programs often exhibit convoluted behaviors and it is nearly impossible to offer a general
scheme to handle all cases of precision loss [Li et al. 2018a, 2020a]; more importantly, we must
ensure the analysis’s soundness while manipulating PFG. Thus, we specify Cut-Shortcut for three
program patterns, field access pattern, container access pattern and local flow pattern, which are
commonly used in programs and result in a large portion of precision loss to pointer analysis. In the
following subsections, we will discuss how to identify Entrances and Exits, Sources and Targets,
and how to cut off edges and add shortcuts precisely and soundly for each pattern, respectively.
Cut-Shortcut is fundamentally different from selective context sensitivity [Jeon et al. 2019,

2020; Li et al. 2018a,b, 2020a; Smaragdakis et al. 2014; Tan et al. 2021]. Selective context-sensitive
approaches select methods by different heuristics and apply contexts directly to them (equivalently
to cloning the methods and analyzing them), and the main cost of these analyses is from cloning
the methods and analyzing them multiple times. Differently, to avoid the overhead of cloning,
Cut-Shortcut neither selects methods nor analyzes them context-sensitively; instead, it simulates
the effect of context sensitivity by removing and adding edges of PFG (the challenge is to ensure
soundness while removing edges), and propagates the points-to information on the modified PFG.
No contexts are applied to any methods in Cut-Shortcut.

3.2 Field Access Pa�ern

There are two kinds of field accesses in Java, field store and field load (in this work, we focus on
instance fields). Java programs often wrap field accesses in methods (e.g., setter/getter), so the client
code needs to access the fields by calling these methods. However, in context insensitivity, object
flows involved in the accesses to the fields of different objects, will be merged inside these methods,
leading to imprecision. In this pattern, we tackle such precision loss under Cut-Shortcut’s
principle, as explained below. To ease understanding, we first introduce two basic cases about
field stores (Section 3.2.1) and loads (Section 3.2.2) using the example of Figure 1 that relies on the
information of field accesses and parameters, and describe a more general case in Figure 3 to show
how our semantics-based scheme tracks the value flows from the caller (and the caller of the caller
...) where the values are finally stored in the target fields through parameters.

3.2.1 Handling of Store. We address the imprecision in the points-to results of instance fields.
For a field store statement B : G .5 = ~, if objects pointed to by both G and ~ come from the
parameters (including this variable) of the method< that contains B , then incoming object flows
from arguments of different calls (of <) are merged inside <, which may cause imprecision in
?C (>8 .5 ) where>8 ∈ ?C (G). Line 4 in Figure 1 gives such an example: this and item are parameters of
method setItem(). When analyzing setItem() context-insensitively, objects from call sites at lines
17 and 22 are merged in it, leading to imprecise result, i.e., ?C (>15.item) = ?C (>20.item) = {>16, >21}.

In Cut-Shortcut, our idea is to cut off the store edges which propagate the merged object flows
to Targets, and find Sources at the call site of the method that contains the field store. We search
for store statement B : G .5 = ~ that both G and ~ are parameters of< (that contains B) and not
redefined in< (this guarantees that the values of both G and ~ all come from arguments of<’s call
sites). If such B is found, then different calls of< form a nebulous path (with only one node ~, e.g.,
the item (3) in Figure 1(0)), making< both Entrance and Exit. Accordingly, Targets are the
instance fields being accessed by G .5 and stored at B (e.g., >15.item and >20 .item stored at line 4).
To prevent merged object flows from being propagated to the Targets, we cut off the store edges
to them (i.e., item → >15.item and item → >20.item in Figure 1).

Since the values of both G and ~ come from arguments of<’s call sites, we can find the matched
Targets and Source at each call site. Namely, the Source is the argument passed to ~ (e.g., the
argument is the item1 at line 17 and ~ is the parameter item at line 3) and the Target is >8 .5 ,
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where >8 ∈ ?C (0) and 0 is the argument passed to G (e.g., the argument 0 is c1 at line 17 and
G is the parameter this). For example, at line 17, item1 is the Source for Target >15 .item (as
?C (c1) = {>15}), and likewise, item2 is the Source forTarget>20.item at line 22 (as ?C (c2) = {>20}).
Thus, we add shortcut edges item1 → >15 .item and item2 → >20.item, and achieve precise result,
i.e., ?C (>15.item) = {>16} and ?C (>20.item) = {>21} (depicted at the top half of Figure 1(1)).

3.2.2 Handling of Load. We address the imprecision in the points-to results for LHS variables
whose values are returned from the methods that load instance fields. For a field load statement
B : G = ~.5 , if objects pointed to by~ come from a parameter (including this variable) of the method
< that contains B , and G is the return variable of<, then the objects loaded from ~.5 (where ~ points
to the incoming objects from arguments of different calls of<) are merged inside<, which may
cause imprecision in points-to sets for the LHS variables of<’s call sites. Line 7 in Figure 1 gives such
an example: this is a parameter of method getItem() and r is its return variable. When analyzing
getItem() context-insensitively, objects from call sites at lines 18 and 23 (i.e., >15 and >20) are
merged in it, and objects loaded from>15 and>20 (i.e.,>16 and>21) are alsomerged at r and propagated
to result1 and result2, leading to imprecise result ?C (result1) = ?C (result2) = {>16, >21}.

In Cut-Shortcut, our idea is to cut off the return edges from< (that return values loaded from
fields) which propagate merged object flows to Targets, and find Sources at<’s call sites. We
search for load statement B : G = ~.5 that the values of both G and ~ are directly related to the
variables of the call sites of< (that contains B), i.e.,~ is a parameter of< and not redefined in< (this
guarantees that the value of ~ all come from arguments of<’s call sites), and G is the return variable
of<. If such B and< are found, we cut off the return edges from< to LHS variable (i.e., the Target)
of each<’s call site to avoid propagation of merged flows, and then identify the Sources at the call
site, i.e., >8 .5 where >8 ∈ ?C (0) and 0 is the argument passed to~ (e.g., 0 is c1 at line 18 and~ is this).
For example, for field load at line 7 in Figure 1, we cut off edges r → result1 and r → result2.
For result1, we find its Source, >15.item, at line 18 (as ?C (c1) = {>15}), and add shortcut edge
>15.item → result1. Similarly, we add >20.item → result2 at line 23. Finally, we obtain precise
result, ?C (result1) = {>16} and ?C (result2) = {>21} (see bottom half of Figure 1(1)).

3.2.3 Handling of Nested Call for Field Access. In real-world programs, field access becomes
complicated when nested method calls are involved. For instance, when a constructor is called, it
may call another constructor or setter method where the store statement is finally executed. In
addition, when inheritance is used, the usage of nested calls for field access becomes common.

class A {

T f;

A(T t){this.set(t);}

set(T p){this.f = p;}

}

1

2

3

4

5

// usage code

T t1 = new T(); //𝑜!
A a1 = new A(t1); //𝑜"
T t2 = new T(); //𝑜#
A a2 = new A(t2); //𝑜$%

6

7

8

9

10

Fig. 3. An example of nested calls for field access.

For example, in Figure 3, A.set() is a setter
called by A’s constructor (line 3). There are two
nested calls to it, 8 → 3 → A.set() and 10 →
3 → A.set() (a call site is represented by its
line number). Here, if we add shortcut edges,
t → >8.f and t → >10.f, at the direct call site
of A.set() (line 3), we still lose precision as

both this and t are parameters of A(), and object flows from call sites at lines 8 and 10 are merged
here, leading to imprecise result ?C (>8 .f) = ?C (>10.f) = {>7, >9}. Similarly, nested call for field load
may also cause precision loss. To handle nested call for field access, we extend our approach to a
more general manner for better precision. Specifically, for a method that contains field access, we
analyze its nested calls (from the method itself to its caller, caller’s caller, and so on, if possible) to
cut off edges and add shortcut edges at proper call sites. For the field store in A.set(), we trace to
the call sites at lines 8 and 10, add shortcut edges t1 → >8.f and t2 → >10.f, and derive precise
result ?C (>8 .f) = {>7} and ?C (>10.f) = {>9}. For details of our approach to handle nested call for
field store and load, please refer to Section 4.2.
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3.3 Container Access Pa�ern

Containers (e.g., ArrayList) are pervasively used in Java programs. As numerous objects flow in
and out of containers, they are crucial to the precision of pointer analysis. In context insensitivity,
objects stored in different containers may flow to and merge in the same container methods, and
horrendous precision loss may be introduced when the merged objects flow out. In order to separate
object flows in different containers, conventional approaches improve precision by analyzing
container methods context-sensitively. However, as pointed out by recent work [Antoniadis et al.
2020; Fegade and Wimmer 2020], applying context sensitivity to the container methods will bring
heavy efficiency costs, especially for large programs. As a result, to analyze containers precisely
while reducing analysis overhead, researchers [Antoniadis et al. 2020; Fegade and Wimmer 2020]
propose to manually rewrite container implementations for composing code models that are simpler
than the original implementations while still preserving the side effects of containers to pointer
analysis. Then, they apply context sensitivity to the rewritten container code during the analysis.
In Cut-Shortcut, we also need to handle containers for obtaining good precision. But we will do
it differently by adopting a scheme under the principle of Cut-Shortcut.

3.3.1 Handling of Containers. Figure 4 shows an ArrayList example of container (just focus on
lines 1-9 for now). We create two ArrayLists, >1 (line 1) and >6 (line 6), and add two objects >2
(line 3) and >6 (line 8) to them, respectively. At lines 4 and 9, we retrieve the elements from >1 and
>6 and assign them to x and y separately. Clearly, x (y) only points to >2 (>7) at run time.

Container implementations typically provide APIs to add elements to, or retrieve elements from
containers. Thus it is natural to consider the addition and retrieval APIs as the Entrance and
Exit methods for container respectively, since objects are stored into and flow out of containers
via them. We denote the call sites of Entrance and Exit as Entrance2B and Exit2B , respectively;
for example, as commented in Figure 4, add() (get()) is the Entrance (Exit) of ArrayList.

ArrayList l1 = new ArrayList(); //𝑜!,𝑝𝑡! (l1)={𝑜!}
Object a = new Object(); //𝑜"
l1.add(a); //ENTRANCE, a is SOURCE
Object x = l1.get(0); //EXIT, x is TARGET

ArrayList l2 = new ArrayList(); //𝑜#,𝑝𝑡! (l2)={𝑜#}
Object b = new Object(); //𝑜$
l2.add(b); //ENTRANCE, b is SOURCE
Object y = l2.get(0); //EXIT, y is TARGET

Iterator it1 = l1.iterator(); //𝑝𝑡! (it1)={𝑜!}
Object r1 = it1.next(); //EXIT, r1 is TARGET
Iterator it2 = l2.iterator(); //𝑝𝑡! (it2)={𝑜#}
Object r2 = it2.next(); //EXIT, r2 is TARGET

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Fig. 4. An example of ArrayList.

Then, the related argument of aEntrance2B
is treated as a Source pointer (say
Entrance

0A6
2B ); for example, a at line 3

is the Entrance
0A6
2B for the call site of

add() at line 3. The LHS variable of a
Exit2B is treated as a Target pointer (say
Exit;ℎB2B ); for example, x at line 4 is the

Exit;ℎB2B for the call site of get() at line
4. In Cut-Shortcut, we cut off the re-
turn edges from Exits to the Exit;ℎB2B so
that the merged object flows inside a
container will not be propagated to the
Exit;ℎB2B . Then we add a shortcut edge from

each Entrance
0A6
2B to the corresponding Exit;ℎB2B for complementing the points-to sets of Exit;ℎB2B .

In context-insensitivity, >2 and >7 will be merged in ArrayList’s methods, and both flow to
x and y via get(), leading to imprecision. In Cut-Shortcut, to avoid precision loss, we cut off
edges returned from get() to both Exit;ℎB2B , x and y. To add shortcut edges, we need to find out

the matched Entrance
0A6
2B and Exit;ℎB2B pair (if they are related to the same container, they are

matched). In our case, a and x is a matched Entrance
0A6
2B and Exit;ℎB2B pair, as their corresponding

Entrance2B (add() at line 3) and Exit2B (get() at line 4) are related to the same container (>1).
A straightforward approach to determine whether Entrance2B and Exit2B are related is to

examine whether the points-to sets of the corresponding EntranceA E2B and ExitA E2B overlap, where
EntranceA E2B and ExitA E2B are the receiver variables of Entrance2B (e.g., l1 of add() at line 3)
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and Exit2B (e.g., l2 of get() at line 9), respectively. However, this approach cannot handle the
other container cases like iterators and Map’s keySet(), etc. Thus, we introduce a concept called
pointer-host map (?C� ) to address the above issue uniformly.
?C� maps a host-related pointer to a set of container objects (called host) related to it. For example,

ArrayList >1 is assigned to l1 (line 1), and thus we have ?C� (l1) = {>1} (we will introduce more
mapping rules later). Then if ?C� (EntranceA E2B ) and ?C� (ExitA E2B ) overlap (namely, they may share
the same host container object), we add a shortcut edge from the corresponding Entrance

0A6
2B to

Exit;ℎB2B . In the above example, as ?C� (l1) (where l1 is the receiver variable of add() at line 3) and
?C� (l1) (where l1 is the receiver variable of get() at line 4) overlap, we add a shortcut edge a → x;
similarly for b → y. As a result, x (y) can precisely point to only >2 (>7). In this case, ?C� serves the
same functionality as typical points-to relation, ?C . We will explain the other usages of ?C� below.

3.3.2 Handling of Host-Dependent Objects. Lines 11-14 in Figure 4 show a very common usage of
container, i.e., accessing elements via iterators. To comprehensively handle containers for better
precision, we need to take such usage into account. Typically, each iterator depends on a container
(i.e., the host), and the elements retrieved from the iterator are the ones stored in the host. We call
the iterator objects the host-dependent objects1.

To handle host-dependent objects, our principle remains the same as the one in Section 3.3.1: we
cut off the return edges from Exits to the Exit;ℎB2B and add a shortcut edge from each Entrance

0A6
2B

to the corresponding Exit;ℎB2B if ?C� (EntranceA E2B ) and ?C� (ExitA E2B ) overlap. The difference is that
we need to expand the set of Entrance, Exit and ?C� for host-dependent objects. In our example,
container elements can be retrieved by next() (lines 12 and 14), thus method next() is added as
an Exit (no expansion to Entrance for this case). As for ?C� , in our case, we need to expand this
mapping relation by (1) adding a host-related pointer, say �?CA (e.g., the iterator pointer it1 at
line 11) to its key set, and (2) adding its related host object, say � (e.g., the ArrayList object >1) to
its value set. Then the last question is how to identify � via �?CA? To answer this question, we
first define a notation called Transfer methods. If a host-dependent object (the object pointed
to by �?CA ) is created by invoking a method< of the class of host � , we call< a Transfer. In
our example, iterator() at line 11 is a Transfer as it is a method of � ’s class (ArrayList) and
invoking it creates/returns a iterator object that is pointed to by �?CA (it1 at line 11). So to map
�?CA to � , for each call site of Transfer, we propagate the host objects of its receiver variable
(?C� (l1) at line 11) to its LHS variable (it1 at line 11). As a result, we have new ?C� relation ?C� (it1)
= {>1} as ?C� (it1) ⊇ ?C� (l1) = {>1}. We call iterator() a Transfer as it transfers the host objects
from its receiver variable to its LHS variable. Note that building ?C� requires the results of pointer
analysis, and our detection of container access pattern needs to be solved on the fly with pointer
analysis. By leveraging pointer analysis, our approach can also handle the cases involving aliasing
when building ?C� and its details will be formalized by rules in Section 4.3.

In our scheme, we only need to specify which APIs are Entrances, Exits or Transfers, and
our analysis will take care of the rest automatically. For generality, we only consider the JDK
containers, the APIs of which are stable. As they are also well documented and it is straightforward
to identify the types of relevant APIs by their names, it only took one of the authors five hours
totally to specify the needed APIs in JDK. Compared to past work [Antoniadis et al. 2020; Fegade
and Wimmer 2020] that requires to rewrite code implementations for related container APIs, our
scheme is more general and simpler.

1Actually, host-dependent objects include not only iterators but also some other objects that depend on certain container,

such as the collection views of Map (e.g., the return value of Map.keySet()), which can also be handled by our approach.
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3.4 Local Flow Pa�ern

This is a simple pattern to address the precision loss case where the values of a method’s parameters
flow to the return variable via a series of local assignments. When such a method is called from
multiple call sites, their argument values are merged into the method, and propagated together
to the LHS variable at each call site, leading to imprecise points-to results. We use an example in
Figure 5 to illustrate this pattern. In method select(), the values of its parameters p1 and p2 will
flow to return variable r. It has two call sites at lines 12 and 16. In context insensitivity, objects
>10, >11, >14 and >15 will be passed to and merged in select(), and then flow together to both r1

and r2 imprecisely, as r1 (r2) only points to >10 or >11 (>14 or >15) in any execution.

A select(A p1,A p2){

A r;

if (…) 

r = p1; 

else

r = p2;

return r;

}

// usage code

A a1 = new A(); //𝑜!"
A a2 = new A(); //𝑜!!
A r1 = select(a1, a2);

A a3 = new A(); //𝑜!#
A a4 = new A(); //𝑜!$
A r2 = select(a3, a4);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(10)

a2

r

r1 r2

a1

a3

p1 p2

𝑜!"

𝑜!#

𝑜!! (11) (14)

a4𝑜!$ (15)

(1) (1)

(4,6)(12) (16)

𝑜!# 𝑜!! 𝑜!" 𝑜!$ 𝑜!" 𝑜!$𝑜!# 𝑜!!

X X

Fig. 5. An example of local flow pa�ern.

In Cut-Shortcut, for this pattern, En-

trance and Exit are the same method, whose
parameter values flow to the return variable.
We focus on the cases that the return values
of a method must all come from its parameters
via local assignments (excluding other sources
of return values such as field loads and method
calls), and the detection of such cases relies on
an intraprocedural value flow analysis. Hence,
we can safely use arguments (that correspond
to the parameters) as the Sources, and add
shortcut edges from them to the Targets, i.e.,
the LHS variables of the call sites. In this ex-
ample, we cut off the return edges from r, and
add shortcut edges a1 → r1 and a2 → r1

(a3 → r2 and a4 → r2) for the call site at
line 12 (16). As a result, r1 (r2) points to only
{>10, >11} ({>14, >15}) in Cut-Shortcut, which

is precise. We formally describe how to analyze this pattern in Section 4.4.

Limitations. Note that our approach is only for Java, thus it cannot be directly applied to other
programming languages; however, the high-level idea of Cut-Shortcut (Figure 2), namely re-
moving imprecision loss edges and adding semantics-preserving edges to the PFG might inspire
techniques for improving the precision of pointer analysis for other languages. Regarding the
applicability of Cut-Shortcut to other abstractions like context sensitivity, our current approach
is not designed to be pluggable into other (selective) context-sensitive analyses. Rather than select-
ing methods and analyzing them context-sensitively, we directly manipulate PFG edges without
applying any contexts. But it would be interesting to try such a combination. For example, for the
methods whose PFG edges are not affected by our approach, but considered by other selective
context-sensitivity approaches [Jeon et al. 2019; Li et al. 2018a,b, 2020a; Smaragdakis et al. 2014],
we can analyze them context-sensitively for possibly better precision. As for flow sensitivity, like
almost all whole-program pointer analyses for Java in past literature [Jeon and Oh 2022; Lu et al.
2021; Smaragdakis and Balatsouras 2015; Sridharan et al. 2013; Tan et al. 2021], our approach is
also flow-insensitive. It is non-trivial to apply our current approach to flow-sensitive analysis, but
it would be interesting to try it in the future.

4 FORMALISM AND SOUNDNESS

In this section, we formalize pointer analysis with our Cut-Shortcut approach (in Section 4.1) and
the three patterns (in Sections 4.2– 4.4), and prove the soundness of Cut-Shortcut (in Section 4.5).
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methods < ∈ M 8
20;;
−→< a call edge from call site 8 to method<

instruction labels 8, 9 ∈ L 80: the :-th argument of call site 8

variables G,~ ∈ V <?: the :-th formal parameter of method<

heap objects >8 , > 9 ∈ O <A4C the return variable of method<

fields 5 ∈ F 34 5G the set of statements that define variable G

pointers G, >8 .5 ∈ P = V ∪ (O × F) PFG � = (#, �)
points-to relations ?C : P→ P(O) nodes = ∈ # = P

edges B → C ∈ � ⊆ # × #

Fig. 6. Domains and notations used in formalism.

8 : G = =4F) ( )

>8 ∈ ?C (G )
[New]

G = ~

~ → G ∈ �
[Assign]

B → C ∈ �

?C (B ) ⊆ ?C (C )
[Propagate]

4 ∈ �(�

4 ∈ �
[Shortcut]

G = ~.5 >8 ∈ ?C (~)

>8 .5 → G ∈ �
[Load]

8 : G.5 = ~ > 9 ∈ ?C (G ) 8 ∉ 2DC(C>A4B

~ → > 9 .5 ∈ �
[Store]

8 : G = ~.< (0A61, ..., 0A6= ) > 9 ∈ ?C (~) <′
= 38B?0C2ℎ (> 9 ,<)

8
20;;
−→<′ > 9 ∈ ?C (<′

?0 )

[Call]

8 : G = ~.< (0A61, ..., 0A6= ) 8
20;;
−→<′

∀ 1 ≤ : ≤ = : 0A6: →<′
?:

∈ �
[Param]

8 : G = ~.< (...) 8
20;;
−→<′ <′

A4C ∉ 2DC'4CDA=B

<′
A4C → G ∈ �

[Return]

Fig. 7. Rules of pointer analysis, with Cut-Shortcut.

4.1 Pointer Analysis with Cut-Shortcut

In this section, we formalize pointer analysis integrated with our Cut-Shortcut approach. For
illustrative purpose, we give in Figure 6 the domains and notations we will use in our formalism,
which are mostly self-explanatory. Here, ?C (G) gives the analysis result: it maps each pointer G to
its points-to set (P(O) denotes power set of O), and for<?: and 80: , we use<?0 (:=0) to denote
this variable of method<, and 800 to denote receiver variable of call site 8 .

Pointer Analysis, in a PFG View. Figure 7 shows our formalism of pointer analysis (for now,

just ignore rule [Shortcut] and premises in black boxes which are related to Cut-Shortcut).

Essentially, our formalism is equivalent to the ones appearing in existing literature [Milanova et al.
2005; Smaragdakis and Balatsouras 2015; Sridharan et al. 2013] as they all express Andersen-style
pointer analysis for Java. However, to integrate with Cut-Shortcut, we explicitly express the
subset constraints among pointers by the edges of the PFG (pointer flow graph). Specifically, all nodes
of PFG are pointers, and by [Propagate], an edge B → C in the PFG indicates that the objects pointed
to by B should also be pointed to by C (i.e., a subset constraint). Other rules describe how to generate
PFG edges for different kinds of statements: object allocation ([New]), local assignment ([Assign]),
instance field load ([Load]) and store ([Store]), and method invocation ([Call],[Param], [Return]).

Cut-Shortcut. Cut-Shortcut is a general approach with one principle throughout: first cut
off the edges that may introduce precision loss, and then add shortcut edges to connect proper
Sources to Targets. To formalize this principle, we define three sets, 2DC(C>A4B and 2DC'4CDA=B
for cutting off edges, and �(� for adding shortcut edges, as explained below.

• 2DC(C>A4B is a set of store statements (identified by their labels). By [Store], if a store statement 9
is in 2DC(C>A4B , then the store edges that should have been generated for 9 will be cut off.
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8
20;;
−→< <?: = G 345G = ∅

80: ↦→G
[Arg2Var]

8 : G.5 = ~ 90:1 ↦→G 90:2 ↦→~

8 ∈ 2DC(C>A4B ⟨ 90:1 , 5 , 90:2 ⟩ ∈ C4<?(C>A4B
[CutStore]

⟨10B4, 5 , 5 A><⟩ ∈ C4<?(C>A4B 90:1 ↦→10B4 90:2 ↦→5 A><

⟨ 90:1 , 5 , 90:2 ⟩ ∈ C4<?(C>A4B
[PropStore]

⟨10B4, 5 , 5 A><⟩ ∈ C4<?(C>A4B 10B4 in< > 9 ∈ ?C (10B4 )
(

(34510B4 ≠ ∅) ∨ (3455 A>< ≠ ∅) ∨ (�: :<?: = 10B4 ) ∨ (�: :<?: = 5 A>< )
)

5 A>< → > 9 .5 ∈ �(�
[ShortcutStore]

Fig. 8. Rules for handling field stores in field access pa�ern.

(

(8 : C> = 10B4.5 ) ∨ (⟨C>,10B4, 5 ⟩ ∈ C4<?!>03B )
)

<A4C = C> 9 : A = _ 90: ↦→10B4 >= ∈ ?C (10B4 )

<A4C ∈ 2DC'4CDA=B ⟨A, 90: , 5 ⟩ ∈ C4<?!>03B >= .5 → C> ∈ A4CDA=!>03�364B
[CutPropLoad]

⟨C>,10B4, 5 ⟩ ∈ C4<?!>03B

>8 ∈ ?C (10B4 )

>8 .5 → C> ∈ �(�
[ShortcutLoad]

8 : A = _ 8
20;;
−→< <A4C ∈ 2DC'4CDA=B

= →<A4C ∈ (� \ A4CDA=!>03�364B )

= → A ∈ �(�
[RelayEdge]

Fig. 9. Rules for handing field loads in field access pa�ern.

• 2DC'4CDA=B is a set of return variables. By [Return], if a return variable<A4C is in 2DC'4CDA=B , then
the return edges from<A4C to the LHS variables of<’s call sites will be cut off.

• �(� is a set of shortcut edges. By [Shortcut], if an edge B → C is added to �(� , it will also be added
to the PFG, and propagate the objects pointed to by B to C .

Next, we describe how these three sets are computed for the three patterns in Sections 4.2–4.4.

4.2 Field Access Pa�ern

In this section, we formalize our handling of store and load, including nested call for field access.

4.2.1 Handling of Store. Figure 8 gives the rules for computing 2DC(C>A4B and �(� to handle field
stores. Intuitively, we cut off the PFG edges introduced by a store statement and add proper shortcut
edges at the call site (of the method containing the store) when we can confirm that the base and
RHS variables of the store (e.g., G and~ of G .5 = ~) always point to the same objects of the arguments
of the call site at each invocation. To help establish shortcut edges, we define C4<?(C>A4B , which is
a set of triples like ⟨10B4, 5 , 5 A><⟩ that represents a (potentially) store operation 10B4.5 = 5 A><.
To handle nested calls (mentioned in Section 3.2.3) for better precision, we construct and propagate
temp stores along the call chains, from the innermost callee (containing the actual store statement)
to the outermost callers, as explained below.

Cut. To simplify rules, we introduce notation ↦→ defined by [Arg2Var], where 80: ↦→G states that
the values of :-th argument of call site 8 flow to variable G of method<, and G is not redefined in<,
i.e., G points to the same object as 80: at each invocation of<. Now we define 2DC(C>A4B in [CutStore].
For a store statement 8 : G .5 = ~, if the values of both G and ~ come from the arguments of call site
of the method containing 8 , then we add 8 to 2DC(C>A4B to cut off the PFG edges introduced by 8 .
Besides, [CutStore] generates temp stores which may be further propagated to the callers.

Shortcut. We define two rules [PropStore] and [ShortcutStore] to derive �(� for field stores.
[PropStore] describes the process of constructing new temp stores and propagating them from
callee to caller recursively. In [ShortcutStore], if the disjunction holds, it means that the temp store
cannot be further propagated to the callers, then we generate shortcut edges for the temp store.
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⟨<, _⟩ ∈ ExitB

<A4C ∈ 2DC'4CDA=B
[CutContainer]

ℎ
2
⇚ B ℎ

2
⇛ C

B → C ∈ �(�
[ShortcutContainer]

8 : G = ~.< (...) 8
20;;
−→<′

⟨<′, :, 2 ⟩ ∈ EntranceB ℎ ∈ ?C� (~)

ℎ
2
⇚ 80:

[HostSource]

8 : G = ~.< (...) 8
20;;
−→<′

⟨<′, 2 ⟩ ∈ ExitB ℎ ∈ ?C� (~)

ℎ
2
⇛ G

[HostTarget]

>8 ∈ ?C (G ) C~?4> 5 (>8 ) <: Collection

>8 ∈ ?C� (G )
[ColHost]

>8 ∈ ?C (G ) C~?4> 5 (>8 ) <: Map

>8 ∈ ?C� (G )
[MapHost]

8 : G = ~.< (...) 8
20;;
−→<′

<′ ∈ Transfers ℎ ∈ ?C� (~)

ℎ ∈ ?C� (G )
[TransferHost]

B → C ∈ � ¬(8 : C = ~.< (...) ∧

8
20;;
−→<′ ∧ <′ ∈ Transfers ∧ B =<′

A4C )

?C� (B ) ⊆ ?C� (C )
[PropHost]

Fig. 10. Rules for container access pa�ern.

4.2.2 Handling of Load. Figure 9 shows the rules for handling field loads. Specifically, if return
values of a method< are loaded from the objects that are passed to< (as arguments), then they
may cause precision loss as arguments from different call sites of< are merged inside<. For such
cases, we cut off the PFG edges from return variables of < to LHS variables of its call sites by
adding the return variables to 2DC'4CDA=B . Similar to handling of stores, we define C4<?!>03B to
help adding shortcuts, which is a set of triples like ⟨C>, 10B4, 5 ⟩ that represents a load operation
C> = 10B4.5 . Also, to handle nested calls (mentioned in Section 3.2.3), we generate and propagate
temp loads along the call chains.

Cut. In handling of load, the rules for cutting off edges and propagating temp loads are almost
identical, hence we merge them into one rule [CutPropLoad] to avoid redundancy. Based on the
insight explained above, [CutPropLoad] cuts off the return edges from the return variable<A4C to
the LHS variables of call sites of<, and constructs and propagates temp loads from callee to caller
recursively, when possible. The rightmost premise and conclusion in [CutPropLoad] record the load
edges to the return variable (C>) in a set A4CDA=!>03�364B , which will be used to ensure soundness
as discussed at the end of this section.

Shortcut. In [ShortcutLoad], we simply generate shortcut edges for triples in C4<?!>03B .
In [CutPropLoad], we cut off all return values of a method< to the LHS variables of its call sites,

and do not require that<A4C can only be defined by the load statement (such restriction would
noticeably weaken precision improvements). However, in some cases, not all of the return values
come from field loads (e.g.,< contains both G = ~.5 and G = I where G is<A4C ). Hence, we define
[RelayEdge] to ensure soundness. If the values of a return variable<A4C come from the pointers
irrelevant to the field loads (i.e., not source pointers of edges in A4CDA=!>03�364B), then we add
shortcut edges to connect the pointers to the LHS variable of<’s call sites.

4.3 Container Access Pa�ern

To formalize container access pattern, we classify container elements into three categories (denoted
by 2): values in a collection, keys in a map, and values in a map. The category is especially useful
for maps as it can tell the analysis whether an Entrance/Exit method manipulates keys or values
of a map. We define three input relations introduced in Section 3.3.

• Entrances, a set of triples like ⟨<,:, 2⟩, which means that< is a container Entrance method,
and the values passed to its :-th parameter are of category 2 .

• Exits, a set of pairs like ⟨<,2⟩, which means that< is a container Exit method that returns
values of category 2 .
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345<?:
= ∅

⟨<,: ⟩↣<?:

[Param2Var]

∀8 ∈ 345G : (8 : G = ~) ∧ (⟨<, _⟩↣ ~)

8 : G = ~′ ⟨<,: ⟩↣ ~′

⟨<,: ⟩↣ G
[Param2VarRec]

⟨<, _⟩↣<A4C

<A4C ∈ 2DC'4CDA=B
[CutLFlow]

8
20;;
−→< 8 : A = _ ⟨<,: ⟩↣<A4C

80: → A ∈ �(�
[ShortcutLFlow]

Fig. 11. Rules for local flow pa�ern.

• Transfers, a set of Transfer methods that transfer hosts from receiver variable of the call site
to its LHS variable, e.g., from ~ to G for G = ~.<(...).

Now, we can formalize container access pattern as shown in Figure 10.

Cut. In [CutContainer], we simply cut all return edges from the methods specified in ExitB .

Shortcut. In [ShortcutContainer], we add shortcut edges based on two relations as premises,

denoted by ℎ
2
⇚ B and ℎ

2
⇛ C , which associate hosts (containers) to their Sources and Targets.

The former states that B is a Source of host ℎ, i.e., B points to the objects flowing into ℎ and the
objects become elements of ℎ with category 2 . The latter states that C is a Target of host ℎ, i.e., it
receives the objects (of category 2) returned from ℎ. By [ShortcutContainer], when both premises
hold, we add a shortcut edge from B to C .

[HostSource] and [HostTarget] show how to derive ℎ
2
⇚ B and ℎ

2
⇛ C , respectively. The key to

derive these two relations is the pointer-host map ?C� as introduced in Section 3.3. The bottom four
rules in Figure 10 describe how to compute ?C� for host-related pointers. Specifically, [ColHost]
and [MapHost] add a collection or map object >8 (C1 <: C2 indicates C1 is a subtype of C2) to ?C� (G) if
G points to >8 . By [TransferHost], if a call site 8 invokes a Transfer method, then we transfer the
hosts associated with the receiver variable of 8 to 8’s LHS variable, e.g., transfer hosts from ; to 8C
for 8C = ; .8C4A0C>A (). By [PropHost], we propagate hosts along PFG edges, except the cases that the
edge is a return edge from a Transfer method. We exclude such cases because (1) [TransferHost]
already handles return values of Transfer methods, and (2) different hosts may flow to the same
Transfer method< and, if we do not exclude such cases, would be propagated to LHS variables of
all<’ s call sites and lead to imprecision.

4.4 Local Flow Pa�ern

Figure 11 gives the rules to compute 2DC'4CDA=B and �(� for local flow pattern. To facilitate the
formalism, we introduce notation↣ as defined by [Param2Var] and [Param2VarRec]. ⟨<,:⟩↣ G states
that G is a local variable in method<, and the objects pointed to by G come from the :-th parameter
of<. Note that [Param2Var] and [Param2VarRec] guarantee that when ⟨<,:⟩↣ G holds, the values of
G must only come from<’s parameter(s) via zero or more local assignments (i.e., the values will
not come from other sources such as field loads and method calls). Based on this notation, we could
easily define edges to cut off/add for local flow pattern.

Cut. In [CutLFlow], if we find that the values of return variable<A4C all come from<’s parameter(s),
then we add<A4C to 2DC'4CDA=B .

Shortcut. In [ShortcutLFlow], if ⟨<,:⟩ ↣ <A4C holds, then for each call site 8 of method<, we
add a shortcut edge from :-th argument of 8 to its LHS variable.

4.5 Soundness

In this section, we give proof sketch for soundness of Cut-Shortcut based on the rules we present
before. We use �2DC to denote the set of edges cut off by our rules. For a Target C , (>DA24C represents
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a set of Sources connected to C via shortcut edges, i.e., (>DA24C = {B | B → C ∈ �(� }. We use %� to
denote a pointer analysis and add subscript to refer to a specific analysis, e.g., %�28 for context-
insensitive pointer analysis and %�2B2 for Cut-Shortcut. For an analysis %�0 , �0 = (#0, �0)
represents its PFG. We show that %�2B2 can generate sound points-to results for a program.
We first prove that any dynamic pointer flow path from LHS variable of an allocation site (i.e.,

pointer that first receives a heap object, which is the staring point of the flow) to a pointer C that
ends with a cut edge 4 in �2DC must flow through some B ∈ (>DA24C . It means that, even if we cut
off edge 4 , the objects that flow to C via 4 at run time can still be propagated to C by the shortcut
edges to C in %�2B2 . We formally state this in Lemmas 4.1 (for the edges cut by 2DC(C>A4B) and 4.2
(for the edges cut by 2DC'4CDA=B).

Lemma 4.1. A dynamic pointer flow path % that ends with a store edge ~ → >: .5 ∈ �2DC must flow

through some B ∈ (>DA24>: .5 .

Proof Sketch. Suppose G .5 = ~ ∈ 2DC(C>A4B and G points to >: . If % ends with ~ → >: .5 , by
[CutStore], it must pass through some arguments passed to ~. [CutStore] and [PropStore] will search
along the call chain from~ to find the outermost invocations. % must pass through~’s corresponding
argument (say 0~) at one of those outermost invocations (say 8). By [ShortcutStore], >: must belong
to points-to set of G ’s corresponding argument at 8 , and thus 0~ ∈ (>DA24>: .5 . □

Assumption 1. We assume that the input relations Entrances and Transfers for container access

pattern are complete w.r.t. the container classes we consider (i.e, container classes in JDK).

Lemma 4.2. Under Assumption 1, a dynamic pointer flow path % that ends with a return edge

<A4C → A ∈ 2DC'4CDA=B must flow through some B ∈ (>DA24A .

Proof Sketch. We discuss 2DC'4CDA=B in each pattern respectively.

• In field access pattern:<A4C ∈ 2DC'4CDA=B is derived from [CutPropLoad]. Suppose A is the LHS
variable of invocation 9 . It is easy to see [CutPropLoad] is an induction process. Every element
in C4<?!>03B arises from an innermost load statement (say 8). If % flows through either a load
edge generated by 8 , since 90: ↦→10B4 , % must flow through 90: . By [ShortcutLoad], 90: ∈ (>DA24A ,
otherwise, by [RelayEdge], other kinds of edges will be connected to<A4C ’s successors.

• In container access pattern:<A4C ∈ 2DC'4CDA=B is derived from [CutContainer]. By the semantics
of Exits in container access pattern, A should point to all objects added to the related containers
(hosts). By Assumption 1, the Entrances and Transfers are complete. By [ColHost]—[PropHost],
?C� will contain all hosts for the related pointers, and by [HostSource] as well as [HostTarget],
Sources and Targets will be associated with the hosts. Since A is a Target that receives elements
from a container, % must flow through some argument(s) passed to the Entrance which will be
captured by [HostSource] and belong to (>DA24A .

• In local flow pattern:<A4C ∈ 2DC'4CDA=B is derived from [CutLFlow]. ⟨<,:⟩ ↣ <A4C indicates
<A4C ’s points-to set only comes from several parameters of<, including<?: . Thus, if % ends
with <A4C → A , it must come from one of these parameters (say <?: ). Suppose A is the LHS
variable of invocation 8 . During dynamic execution, 80: is the predecessor of<?: , which means
% flows through it. By [ShortcutLFlow], 80: ∈ (>DA24A . □

Theorem 4.3 (Soundness of %�2B2 ). Under Assumption 1, %�2B2 is sound.

Proof Sketch. We will show that for any dynamic pointer flow path % from a starting point
(say B) to an arbitrary program pointer (say C ), C is reachable from B on�2B2 . Suppose the nodes in %

are [B = ?0, ?1, ..., ?= = C], then we prove B can reach ?8 for any 8 ∈ [0, =] on �2B2 by induction.
At first, it holds trivially for 8 = 0, i.e., B reaches itself (?0). For induction, we prove that if B

reaches ?: for any : ≤ 8 (8 < =), then it also reaches ?8+1. Considers the edge ?8 → ?8+1 on % . There
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are two cases for the edge, (1) ?8 → ?8+1 is not cut off on�2B2 , and (2) it is cut off and�2B2 contains
the corresponding shortcut edges for it. In case (1), B can reach ?8+1 on �2B2 through path from B to
?8 plus ?8 → ?8+1. In case (2), by Lemmas 4.1 and 4.2, there exists a B?8+1 ∈ (>DA24?8+1 where B?8+1 is
one of the node in path [?0, ?1, ..., ?8 ]. Then by the premise of induction, B reaches B?8+1 , and since
there is a shortcut edge B?8+1 → ?8+1 on �2B2 , B also reaches ?8+1. Thus, by induction, we prove B
can reach any ?8 , including C , on�2B2 , which means that for every object > that C points to during
dynamic execution, %�2B2 ensures that > is contained in ?C2B2 (C). Hence %�2B2 is sound. □

5 EVALUATION

In this section, we investigate the following research questions for evaluation.

RQ1. How does Cut-Shortcut compare to context-insensitive pointer analysis?
RQ2. How does Cut-Shortcut compare to conventional context-sensitive pointer analysis?
RQ3. How does Cut-Shortcut compare to state-of-the-art selective context-sensitive pointer

analysis technique that has similar goal (i.e., for high efficiency with good precision)?

Implementation. To thoroughly evaluate the effectiveness of Cut-Shortcut and also demonstrate
its generality, we implemented it on two totally diverse pointer analysis frameworks (latest versions),
the declarative Doop [DOOP 2022] (written in Datalog) and the imperative Tai-e [Tai-e 2022]
(written in Java). Doop is a pointer analysis framework that has been considered as the mainstream
platform to implement and evaluate Java pointer anlaysis in the last decade, and Tai-e is a recent
static analysis framework for Java, equipped with a highly efficient pointer analysis system. We
fixed an unsound issue of Doop by adding reflection-related classes to the closed world for better
soundness. As Datalog prohibits negation in a recursion cycle, we cannot directly implement rule
[CutPropLoad] on Doop in Figure 9 (along with rules [Return], [Propagate] and [Call] in Figure 7), and
the workaround to get rid of the cycle would increase analysis cost unbearably. Thus, we omit the
handling of load in field access pattern for Doop. Overall, Cut-Shortcut’s core implementation
contains around only 100 Datalog rules onDoop and 2000 lines of Java code on Tai-e. We will release
and maintain the source code of Cut-Shortcut on Tai-e at https://github.com/pascal-lab/Tai-e,
and the source code on Doop is available in our artifact.

The Compared Analyses. We compare Cut-Shortcut to three types of pointer analyses: context
insensitivity (CI), mainstream context sensitivity, and state-of-the-art selective context sensitivity.
CI is de facto the fastest pointer analysis for Java. For conventional context sensitivity, we select
the commonly-used 2-object-sensitive (2obj) [Milanova et al. 2002, 2005] and 2-type-sensitive
(2type) [Smaragdakis et al. 2011] analyses. 2obj is highly-precise, and 2type often achieves much
better scalability than 2obj while yielding comparable precision. For selective context-sensitivity,
we consider a state-of-the-art approach Zipper4 [Li et al. 2020a], which exhibits better efficiency and
precision trade-off than many other selective approaches. Zipper [Li et al. 2018a] (often evaluated
as state-of-the-art in recent literature, with comparable precision but is much less efficient than
Zipper4 ) is not considered as it fails to scale for most of our evaluated programs.

Experimental Settings. All experiments were conducted on an Intel Xeon 2.2GHz machine with
128GB of memory. The time budget is set to 2 hours for each analysis. We consider all the large
and complex Java programs for evaluation used in recent related literature [Jeon et al. 2019, 2018;
Jeong et al. 2017; Li et al. 2018a,b, 2020a; Lu and Xue 2019; Tan et al. 2021] except those that cannot
be executed so that we cannot perform recall experiments on them for evaluating soundness. We
analyze the programs with a large Java library JDK1.6 that is commonly used in recent work [He
et al. 2021, 2022; Jeon et al. 2020; Jeon and Oh 2022; Lu et al. 2021].

Precision Metrics. To measure precision, we use four independently useful clients that are widely-
used as precision metrics in pointer analysis literature [Jeon et al. 2019, 2020; Jeong et al. 2017; Li
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Fig. 12. Analysis time (in seconds) spent by our Cut-Shortcut approach (CSC), context-insensitive (CI),

selective 2-object-sensitive (Zipper4 ) and conventional context-sensitive (2obj, 2type) pointer analyses on

Doop. CSC also exhibits similar efficiency advantage over CI on Tai-e (the figure is not shown for limited

space) while obtaining significantly be�er precision than CI on both Doop (Table 1) and Tai-e (Table 2).

et al. 2018a,b, 2020a; Lu et al. 2021; Smaragdakis et al. 2011, 2014; Tan et al. 2017]. The clients are a
cast-resolution analysis (metric: the number of casts that may fail—#fail-cast), a method reachability
analysis (metric: the number of reachable methods—#reach-mtd), a devirtualization analysis (metric:
the number of virtual call sites that cannot be disambiguated into monomorphic calls—#poly-call)
and a call-graph building analysis (metric: the number of call graph edges—#call-edge).

5.1 RQ1: Cut-Shortcut vs. Context Insensitivity (CI)

In this section, we examine how Cut-Shortcut fares against the fastest pointer analysis, CI. But
in order to trust the reliability of Cut-Shortcut’s efficiency benefit, we must first confirm its
soundness. In addition to the theoretical soundness proofs in Section 4.5, below we further validate
its soundness by a recall experiment.

Soundness (Recall). In the recall experiment, we execute all the evaluated programs with their
default tests (e.g., for DaCapo benchmarks [Blackburn et al. 2006]) or the ones we input (e.g., for
GUI programs, we click to interact with them and the results are recorded and will be provided in
artifact). Then under these inputs, we dynamically record their reachable methods and call graph
edges during execution (it is very hard to instrument other dynamic information like detailed
points-to relations), and then examine how many of them can be recalled (over-approximated) by
Cut-Shortcut and other analyses in our evaluation. The results show that Cut-Shortcut can
recall virtually all true reachable methods and call graph edges discovered by other sound analyses.
For the other cases, it misses totally 20 call graph edges for 6 programs on Doop and 11 edges for 3
programs on Tai-e, and after manual inspection, we found that the missed edges are not true and
they are incorrectly recorded by the instrumentation tool. As a result, Cut-Shortcut achieves the
same soundness as other analyses in the recall experiment. Plus the theoretical soundness proof,
we can trust that the remaining efficiency and precision results are reliable.

Efficiency and Precision. Figure 12 shows graphically the elapsed time of all analyses on Doop

(Tai-e’s is not shown for space limitation). Table 1 (for Doop) and Table 2 (for Tai-e) present all
efficiency and precision results in full detail.
We can see that CI is substantially more efficient than context-sensitive analyses, and Cut-

Shortcut (CSC) is even able to run faster than CI for 7 out of 10 programs on both Doop and
Tai-e. For the remaining programs, Cut-Shortcut is either as fast as or negligibly slower than CI.
The superb efficiency of Cut-Shortcut stems from its methodology and precision improvements.
First, unlike context sensitivity (which improves precision by cloning methods and heap objects
under different contexts), Cut-Shortcut improves precision by modifying PFG which generally
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Table 1. Efficiency and precision results for context-insensitive (CI), conventional context-sensitive (2obj,

2type), and selective 2-object-sensitive (Zipper4 ) pointer analyses, and our Cut-Shortcut approach (CSC) on

the declarative Doop framework. For all numbers, smaller is be�er.

Precision metrics Precision metrics

Program Analysis Time #fail- #reach- #poly- #call- Program Analysis Time #fail- #reach- #poly- #call-
(s) cast mtd call edge (s) cast mtd call edge

eclipse

CI 223 5,077 23,549 10,744 183,478

gruntspud

CI 523 6,982 39,555 12,328 272,944
2obj >2h – – – – 2obj >2h – – – –
2type 2,126 4,334 22,928 9,955 164,742 2type >2h – – – –
Zipper4 3,526 4,198 23,206 10,049 170,172 Zipper4 4,614 5,846 39,092 11,277 230,831
CSC 107 4,082 23,437 10,475 173,740 CSC 484 5,415 39,354 11,826 251,921

freecol

CI 671 9,971 44,838 14,626 309,033

soot

CI 641 16,724 32,696 16,877 418,910
2obj >2h – – – – 2obj >2h – – – –
2type >2h – – – – 2type >2h – – – –
Zipper4 3,836 8,492 44,159 12,630 265,446 Zipper4 >2h – – – –
CSC 595 7,435 44,472 13,354 287,241 CSC 536 10,991 32,497 16,257 399,610

briss

CI 627 8,000 41,787 12,853 294,428

columba

CI 1,352 10,824 56,431 17,679 413,829
2obj >2h – – – – 2obj >2h – – – –
2type >2h – – – – 2type >2h – – – –
Zipper4 4,631 6,650 41,381 11,640 261,081 Zipper4 >2h – – – –
CSC 582 6,129 41,563 12,130 276,029 CSC 1,508 8,606 56,050 17,135 397,826

hsqldb

CI 50 1,723 11,143 1,914 61,929

jython

CI 104 2,381 12,623 2,937 119,227
2obj >2h – – – – 2obj >2h – – – –
2type 221 1,276 10,769 1,598 54,652 2type >2h – – – –
Zipper4 278 1,209 10,793 1,618 54,725 Zipper4 523 2,193 12,423 2,796 115,639
CSC 52 1,295 10,986 1,744 56,513 CSC 115 1,886 12,325 2,904 111,159

jedit

CI 163 4,349 25,157 6,336 149,761

findbugs

CI 81 3,488 16,985 4,575 106,233
2obj >2h – – – – 2obj >2h – – – –
2type 2,071 3,458 24,475 5,493 124,798 2type 827 2,472 16,512 3,866 88,923
Zipper4 768 3,401 24,552 5,594 125,883 Zipper4 541 2,495 16,696 4,034 93,485
CSC 97 3,188 24,629 5,880 129,671 CSC 70 2,568 16,782 4,287 93,800

introduces little overhead. Second, different from existing selective context-sensitivity approaches,
PFG does not need a pre-analysis: it performs the context-insensitive pointer analysis algorithm
on an on-the-fly constructed PFG. Third, Cut-Shortcut prevents a large amount of spurious
points-to results from being propagated to other parts of the program during analysis, and the
analysis cost of PFG manipulation is usually negligible compared to the efficiency benefit brought
by the increasing precision; as a result, Cut-Shortcut generally exhibits better efficiency than CI.

Now let us examine the precision. For all precision metrics, the smaller number signifies a better
result. Cut-Shortcut achieves better precision than CI for all precision metrics on both Doop and
Tai-e, and the precision improvement is usually significant, especially for #fail-cast and #call-edge.
Cut-Shortcut affects precision via modifying PFG guided by the patterns, and the improvements
show that the three patterns we designed for Cut-Shortcut are useful for improving precision.
One may wonder which pattern of Cut-Shortcut has the biggest impact on precision? To

address this question, we conduct three sets of experiments for Cut-Shortcut on Tai-e to measure
the impact of the three patterns for different clients. For each experiment, only one pattern is
enabled and the other two patterns are disabled. To measure the impact, we compute the precision
improvement over CI of each individual pattern and divide it by the overall improvement of
three patterns together. We found the impact of patterns varies for different clients. For example,
on average, field access pattern, container pattern, and local flow pattern improve the precision
by 11.9%, 75.8% and 11.8% respectively for client #fail-cast, and 53.2%, 40.5% and 2.0% for client
#reach-mtd. (Note that the sum of the three percentage numbers is less than 100%, because their
combination can further help improve the precision of each one by reducing the spurious value
propagation during the analysis).
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Table 2. Efficiency and precision results for context-insensitive (CI), conventional context-sensitive (2obj,

2type), and selective 2-object-sensitive (Zipper4 ) pointer analyses, and our Cut-Shortcut approach (CSC) on

the imperative Tai-e framework. For all numbers, smaller is be�er.

Precision metrics Precision metrics

Program Analysis Time #fail- #reach- #poly- #call- Program Analysis Time #fail- #reach- #poly- #call-
(s) cast mtd call edge (s) cast mtd call edge

eclipse

CI 21 5,091 23,920 10,610 184,294

gruntspud

CI 44 6,775 39,800 12,342 274,872
2obj 5,218 3,659 23,195 9,690 164,143 2obj >2h – – – –
2type 261 4,230 23,338 9,876 165,823 2type >2h – – – –
Zipper4 557 4,154 23,583 9,907 170,947 Zipper4 162 5,308 39,201 10,978 232,046
CSC 12 3,977 23,746 10,198 173,556 CSC 39 5,035 39,444 11,675 240,281

freecol

CI 54 9,779 46,896 15,496 323,141

soot

CI 107 16,659 32,918 16,372 415,728
2obj >2h – – – – 2obj >2h – – – –
2type >2h – – – – 2type >2h – – – –
Zipper4 179 7,199 46,064 13,546 279,502 Zipper4 1,845 12,901 32,178 13,835 281,751
CSC 40 6,511 46,261 14,143 288,839 CSC 51 10,509 32,660 15,152 337,562

briss

CI 50 7,815 41,851 12,755 294,038

columba

CI 117 10,492 56,787 17,700 425,149
2obj >2h – – – – 2obj >2h – – – –
2type >2h – – – – 2type >2h – – – –
Zipper4 179 6,098 41,427 11,575 261,811 Zipper4 1,163 8,257 55,973 15,931 346,346
CSC 58 5,669 41,462 11,891 265,948 CSC 122 7,862 56,427 16,963 389,537

hsqldb

CI 4 1,674 11,588 1,817 64,393

jython

CI 11 2,421 13,058 2,951 121,528
2obj >2h – – – – 2obj >2h – – – –
2type 25 1,094 11,185 1,472 56,712 2type >2h – – – –
Zipper4 26 1,027 11,214 1,496 56,827 Zipper4 42 1,898 12,617 2,597 111,866
CSC 3 1,169 11,335 1,618 57,986 CSC 11 1,864 12,683 2,884 112,364

jedit

CI 15 4,113 25,261 6,339 150,159

findbugs

CI 6 3,391 17,353 4,462 107,339
2obj 7,192 2,578 24,214 4,933 121,896 2obj 1,369 1,984 16,821 3,560 88,890
2type 407 3,104 24,263 5,097 122,782 2type 83 2,379 16,874 3,752 90,018
Zipper4 39 3,042 24,342 5,212 123,783 Zipper4 22 2,453 17,099 3,917 95,543
CSC 10 2,913 24,641 5,825 129,248 CSC 5 2,215 17,099 4,167 92,451

5.2 RQ2: Cut-Shortcut vs. Conventional Context Sensitivity

In this section, we investigate how Cut-Shortcut performs compared to mainstream conventional
context sensitive pointer analyses, 2obj and 2type.

Efficiency. As shown in Tables 1 and 2, 2obj runs out of time for all 10 programs on Doop and
7 out of 10 programs on Tai-e. 2type is more scalable than 2obj, but it still fails to scale for 6
programs on both Doop and Tai-e. As a comparison, Cut-Shortcut can finish analysis for all
programs. For the programs that 2obj and 2type scale for, Cut-Shortcut runs remarkably faster.
For 2obj, Cut-Shortcut is on average 475.9× faster on Tai-e (2obj is not scalable for all programs
onDoop, so we cannot compute its speedup), and for 2type, the average speedup of Cut-Shortcut
is 14.3× on Doop and 21.8× on Tai-e. In summary, Cut-Shortcut achieves dramatically better
efficiency and higher scalability than conventional context sensitivity.

Precision. When 2obj is scalable (for 3 out of 10 programs on Tai-e), it is more precise than all
other analyses including Cut-Shortcut for all precision metrics. When 2type is scalable (for 4 out
of 10 programs onDoop and Tai-e), it is generally more precise than Cut-Shortcut, but it performs
worse on #fail-cast for 2 out of 4 programs on Doop and 3 out of 4 programs on Tai-e. These
results demonstrate the high precision of conventional context-sensitivity approaches; however,
we cannot rely on them to improve precision in many programs due to their poor scalability.

5.3 RQ3: Cut-Shortcut vs. State-of-the-Art Selective Context Sensitivity

In this section, we compare Cut-Shortcut to Zipper4 [Li et al. 2020a], a state-of-the-art selective
context sensitivity approach. We use the default configuration of Zipper4 as in [Li et al. 2020a],
which is well-tuned and achieves very good trade-off between efficiency and precision.
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Table 3. Detailed comparison between Zipper
4 and Cut-Shortcut on Doop (le� half) and Tai-e (right half).

Program

Zipper4 CSC Zipper4 CSC

Total Pre- Main Selected
Time

Involved Overlapped Total Pre- Main Selected
Time

Involved Overlapped
time analysis analysis methods methods methods time analysis analysis methods methods methods

eclipse 3,526 251 3,275 3,616 107 3,827 42.8% 557 29 528 3,430 12 4,168 34.3%
freecol 3,836 992 2,844 4,497 595 7,650 27.7% 179 109 70 3,855 40 7,211 22.7%
briss 4,631 974 3,657 3,931 582 7,208 24.3% 179 100 79 3,206 58 6,990 19.0%
hsqldb 278 57 221 1,846 52 1,914 41.0% 26 7 19 1,494 3 1,819 32.8%
jedit 768 214 554 2,811 97 5,241 25.2% 39 28 11 2,245 10 4,241 22.3%
gruntspud 4,614 1,066 3,548 4,058 484 6,980 25.8% 162 101 61 3,432 39 6,506 22.3%
soot >2h 806 >2h 9,802 536 4,585 60.6% 1,845 121 1,724 12,436 51 6,072 67.2%
columba >2h 1,936 >2h 6,137 1,508 9,322 27.0% 1,163 352 811 4,247 122 9,072 19.7%
jython 523 324 199 786 115 2,504 14.9% 42 33 9 1,534 11 2,557 20.3%
findbugs 541 93 448 2,438 70 3,037 36.4% 22 11 11 2,188 5 2,909 33.0%

Efficiency. The execution of Zipper4 consists of three parts: pre-analysis (a context-insensitive
pointer analysis), Zipper4 itself (to select a set of methods according to its strategy), and main
analysis (the pointer analysis that applies context sensitivity only to the selected methods); hence,
the elapsed time of Zipper4 is the sum of execution time of the three parts. Tables 1 and 2 clearly
show that Zipper4 is more scalable and faster than 2obj and 2type on both Doop and Tai-e. On
Doop, Zipper4 scales for 8 out of 10 programs, and on Tai-e, Zipper4 scales for all programs.
Nonetheless, Cut-Shortcut is still superior to Zipper4 in terms of efficiency with an average
speedup of 10.3× onDoop and 12.5× on Tai-e for the programs thatZipper4 can scale. To thoroughly
compare the efficiency of Zipper4 and Tai-e, we give detailed elapsed time of Zipper4 and Cut-

Shortcut in Table 3, where the left half and right half of the table show data on Doop and Tai-e,
respectively. For Zipper4 , column “Total time” lists total analysis time of the three parts of Zipper4

(same as in Figure 1 and 2), column “Pre-analysis” shows the summation of analysis time for CI and
Zipper4 itself, and column “Main analysis” gives analysis time for Zipper4 -guided context-sensitive
pointer analysis. As we can see, the cost of pre-analysis of Zipper4 occupies 25.6% (on Doop) and
44.8% (on Tai-e) of Zipper4 ’s total time on average, and even if we only consider the main analysis
of Zipper4 , Cut-Shortcut is still 8.4× (on Doop) and 10× (on Tai-e) faster than Zipper4 , which
again demonstrates Cut-Shortcut’s high efficiency.

Precision. For #fail-cast, Cut-Shortcut outperforms Zipper4 for all programs except findbugs
on Doop and hsqldb on both. For the remaining precision metrics, Cut-Shortcut is still com-
parable to Zipper4 (despite the high advantage of analysis speed of Cut-Shortcut). For some
programs like jython on Doop, Cut-Shortcut even outperforms Zipper4 in 3 out 4 precision
metrics. We expect that by conducting additional program patterns based on Cut-Shortcut’s
principle in the future, we can further improve the precision (and efficiency) of Cut-Shortcut.

Although Zipper4 and Cut-Shortcut improve precision in fundamentally different ways, one
may wonder whether the methods selected by Zipper4 are the same as the ones that are involved
in the cut and shortcut edges identified by Cut-Shortcut? Table 3 answers this question in detail.
On average (including both Doop and Tai-e), Cut-Shortcut considers 5191 methods (that are
involved in the cut and shortcut edges), accounting for 17% of all reachable methods per program,
while Zipper4 selects 3899 methods, and only 31% of methods involved in the edges identified by
Cut-Shortcut are also selected by Zipper4 (see column “Overlapped methods”).

6 RELATED WORK

Context sensitivity plays an essential role for whole-program Java pointer analysis, and we have
discussed some of the related work in earlier sections. The other relevant research is covered below.
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In recent years, many selective context-sensitivity approaches are proposed tomake efficiency and
precision trade-off, especially for large and complex Java programs. We can understand “selective”
in two ways: select more effective context elements to analyze each method (Select context elements)
and select a set of program methods that need context sensitivity to analyze them (Select program
methods). Below we discuss these two types of selective context-sensitivity approaches in turn.

Select Context Elements. Conventional (:-limiting) context sensitivity uses : consecutive context
elements, e.g., [2: ..., 22, 21] to analyze a method<, where 21 is<’s call site and 22 is the call site
of the method containing 21, etc. However, Tan et al. [2016] found that this approach may result
in many context elements that are not useful for improving precision while occupying the slots
of context elements limited by : . Therefore, Tan et al. [2016] present an approach to recognize
such redundant context elements by exploiting the so-called object allocation graph they proposed.
Similarly, Jeon et al. [2018] develop a machine-learning scheme called context tunneling to select
such precision-useless context elements for more effective analysis. Further, on the basis of context
tunneling, [Jeon and Oh 2022] propose an interesting approach that transforms object sensitivity
to call-site sensitivity and show that the latter can simulate the former (but not vice versa).

Select Program Methods. Conventional context sensitivity uniformly applies contexts to every
method in a given program. However, for certain program methods, context sensitivity does not
help improve precision but only incurs extra analysis cost. As a result, researchers propose to
select a set of methods that are beneficial to analysis precision and only apply context sensitivity to
them while analyzing the remaining methods context-insensitively. To make a good efficiency and
precision trade-off, the overall principle is to select the methods that are precision-critical [Li et al.
2018a] but not scalability-threaten [Li et al. 2020a]. To do so, various selection strategies exist: they
rely on parameterized heuristics (whose thresholds are based on expert experience) [Hassanshahi
et al. 2017; Smaragdakis et al. 2014], machine-learning approaches [Jeon et al. 2019, 2020; Jeong
et al. 2017], abstracted memory capacity [Li et al. 2018b], program patterns [Li et al. 2018a, 2020a]
or the scheme that is able to take advantages of the above ones [Tan et al. 2021]; in addition, context
sensitivity can also be applied to the selected variables (rather than methods) [He et al. 2021; Lu
and Xue 2019] based on CFL-reachability [Reps 1998].

Hybrid Context Sensitivity. In some pointer analyses, the context elements for the same method
may vary. Kastrinis and Smaragdakis [2013] present a hybrid context-sensitivity approach in which
a method may be analyzed under both call-site and object sensitivity, and in some cases, such
combination may lead to more effective results than the single type of context elements. Thakur
and Nandivada [2020] mix object-sensitivity contexts and the level-summarized relevant value
contexts (a context abstraction proposed in their earlier work [Thakur and Nandivada 2019]) to
analyze each method for yielding more precise results than individual of them.

No matter the selective or the hybrid context-sensitivity approaches described above, they still
rely on the core idea of context sensitivity to replicate (a set of) methods and analyze the program
elements in them separately under different (types of) contexts. Our approach is fundamentally
different in that it simulates the effect of context sensitivity by cutting off precision-loss edges and
add shortcuts directly from Source to Target on PFG as explained throughout the paper.

Other Related Work. In terms of graph modification, Li et al. [2020b, 2022] introduce an algorithm
to simplify the input graph of interleaved Dyck reachability framework which is able to express
various analysis problems (e.g., taint analysis [Huang et al. 2015], demand-driven context-sensitive
pointer analysis [Späth et al. 2016; Sridharan and Bodík 2006]). Cut-Shortcut differs from it
in both the target problem and the underlying graph. Speaking of removing spurious points-to
information for Java, in addition to context sensitivity, De and D’Souza [2012] present a flow-
sensitive approach to partially perform strong updates to heap objects. They accomplish this
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by expressing points-to relations via access paths [Fink et al. 2008; Kanvar and Khedker 2016];
differently, Cut-Shortcut and many other schemes often express points-to information via PFG-
like graphs. Trace partitioning [Blanchet et al. 2003; Rival and Mauborgne 2007] analyzes the code
if (c) {S1} else {S2} <rest> as if (c) {S1;<rest>} else {S2;<rest>}. The <rest> is
cloned twice into both branches and then the merging at the original starting point of <rest>
is delayed to the end of the <rest>. This is more similar to the idea of context sensitivity which
clones code. Cut-Shortcut is fundamentally different as we do not clone code; moreover, instead
of delaying merging, we avoid merging by removing the edges along which imprecision propagates
outside a method for improving precision. Zhang et al. [2014] present a hybrid top-down and bottom-
up analysis. Top-down and bottom-up approaches are general ideas that many static analyses
adopt. Like other mainstream pointer analyses for Java [Smaragdakis and Balatsouras 2015], Cut-
Shortcut also performs in a top-down manner; if we treat bottom-up analysis as a summarization,
the high-level idea of our addition of shortcut edges could be seen as a kind of pointer-specific
summarization. However, neither the target problem, nor its underlying concrete methodology
of Cut-Shortcut is similar to [Zhang et al. 2014]. Finally, there are efforts to accelerate context-
sensitive Java pointer analysis by merging heap objects [Chen et al. 2021; Tan et al. 2017], which
are orthogonal to Cut-Shortcut.

7 CONCLUSIONS

For the past 20 years, context sensitivity has been considered as virtually the most useful technique
for increasing the precision of Java pointer analysis. However, it brings heavy efficiency costs
especially for large and complex programs. Selective context-sensitivity approaches partially
alleviate this issue but have not solved its efficiency bottleneck, because it is very hard to correctly
select the methods that are precision-critical but do not threaten scalability; as a result, they still
run the risk of computing and maintaining a large number of contexts to distinguish spurious
object flows, which finally yields limited results.

To address this dilemma, we present a fundamentally different approach called Cut-Shortcut

which tries to simulate the effect of context sensitivity without applying contexts. This is achieved
by cutting off the edges that bring precision loss and add shortcut edges for connecting related
pointers on the typical PFG of pointer analysis. We instantiate Cut-Shortcut by exploiting three
program patterns and designing rules based on them in accordance with Cut-Shortcut’s principle.
Then we formalize it and prove its soundness. To comprehensively validate Cut-Shortcut’s
effectiveness (and generality as a principled approach), we implement two versions of it for two
state-of-the-art Java pointer analysis frameworks: one in Datalog for the declarative Doop and the
other in Java for the imperative Tai-e. The experimental results are extremely promising: Cut-
Shortcut is even able to run faster than context insensitivity for most evaluated programs while
obtaining significantly better precision (high precision that is comparable to context sensitivity) in
both frameworks. Given the encouraging outcomes, more program patterns or insights are expected
to be explored on top of Cut-Shortcut, and we hope that our approach could provide some new
perspectives for developing more effective pointer analysis for Java in the future.
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