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Abstract

Mainstream points-to analysis techniques for object-oriented

languages rely predominantly on the allocation-site abstrac-

tion to model heap objects. We present MAHJONG, a novel

heap abstraction that is specifically developed to address

the needs of an important class of type-dependent clients,

such as call graph construction, devirtualization and may-

fail casting. By merging equivalent automata representing

type-consistent objects that are created by the allocation-

site abstraction, MAHJONG enables an allocation-site-based

points-to analysis to run significantly faster while achieving

nearly the same precision for type-dependent clients.

MAHJONG is simple conceptually, efficient, and drops

easily on any allocation-site-based points-to analysis. We

demonstrate its effectiveness by discussing some insights on

why it is a better alternative of the allocation-site abstraction

for type-dependent clients and evaluating it extensively on

12 large real-world Java programs with five context-sensitive

points-to analyses and three widely used type-dependent

clients. MAHJONG is expected to provide significant benefits

for many program analyses where call graphs are required.

CCS Concepts •Theory of computation → Program

analysis

Keywords points-to analysis, heap abstraction

1. Introduction

Pointer Analyses should be designed to be appropriate

in cost and precision for specific groups of client prob-

lems. We do not need a different pointer analysis per

client problem, but rather we should look for classes of

client problems with similar needs.

— Barbara Ryder [17]

∗ These authors contributed equally to this work

Every points-to analysis, especially for object-oriented lan-

guages such as Java and C#, requires a heap abstraction for

partitioning the infinitely-sized heap into a finite number

of (abstract) objects. For object-oriented programs, context-

sensitivity is important for achieving useful precision. Due to

many years of research, context-sensitivity can be achieved

by three main approaches with different efficiency and pre-

cision tradeoffs: call-site-sensitivity [15, 22, 36, 42, 51, 53],

object-sensitivity [29, 40, 48] and type-sensitivity [39].

However, little progress has been made on developing

heap abstractions for points-to analysis. Mainstream points-

to analysis frameworks for Java, such as CHORD [10],

DOOP [14], SOOT [49] and WALA [50], rely predominantly

on the allocation-site abstraction to model heap objects. In

this case, distinct allocation sites are represented by distinct

(abstract) objects, with one object per site, which can be fur-

ther separated context-sensitively in an orthogonal manner.

As programming languages become more heap-intensive,

the need for effective heap abstractions is greater [19, 38,

44]. The suitability of the allocation-site abstraction as a uni-

versal solution for all clients of points-to analysis needs to

be revisited. While maximizing the precision for may-alias,

this abstraction often over-partitions the heap without im-

proving the precision much for an important class of type-

dependent clients such as call graph construction, devirtu-

alization and may-fail casting, causing often the underlying

points-to analysis to be unscalable for large programs. For

this reason, WALA [50] and DOOP [14], provide an option

for all objects of a certain class, such as java.lang.String

or java.lang.StringBuffer, to be merged ad hocly.

In this paper, we present MAHJONG, a novel heap ab-

straction that is specifically developed to address the needs

of type-dependent clients. Given a program, we first create

a lightweight alternative of the allocation-site abstraction by

performing a fast but imprecise allocation-site-based points-

to analysis as a pre-analysis and then use it to drive a subse-

quent points-to analysis. Based on the points-to information

found during the pre-analysis, MAHJONG merges two ob-

jects if both are type-consistent, i.e., if the objects reached

from both along the same sequence of field accesses have

a common type. We formulate the problem of checking the

type-consistency of two objects as one of testing the equiv-

alence of two sequential automata in almost linear time, by

applying a classic Hopcroft-Karp algorithm [18] with minor
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modifications. MAHJONG is simple conceptually and drops

easily on any allocation-site-based points-to analysis.

Compared to the allocation-site abstraction, MAHJONG

allows a points-to analysis to run significantly faster while

achieving nearly the same precision for type-dependent

clients. Thus, MAHJONG makes it possible to accelerate a

given points-to analysis or replace it with a more precise

but usually more costly points-to analysis that is either in-

efficient or unscalable if the allocation-site abstraction is

used. MAHJONG is expected to provide significant benefits

to many program analyses, such as bug detection, security

analysis, program verification and program understanding,

where call graphs are required [3, 5, 7, 16, 26, 31, 32, 43,

54, 55].

We demonstrate the effectiveness of MAHJONG by dis-

cussing some insights on why it is a better alternative of

the allocation-site abstraction for type-dependent clients and

conducting an evaluation extensively on 12 large Java pro-

grams with five widely used context-sensitive points-to anal-

yses and three significant type-dependent clients, call graph

construction, devirtualization and may-fail casting [20, 22,

39, 40, 42]. Take, 3obj, a 3-object-sensitive points-to anal-

ysis [29], the most precise one used in our evaluation, as

an example. For the four programs that can be analyzed

scalably under 3obj, our MAHJONG-based 3obj runs 131X

faster, on average, while achieving nearly the same precision

for all the three clients. For the remaining eight, where 3obj

is unscalable in 5 hours each, our MAHJONG-based 3obj can

analyze five of them in an average of 33.42 minutes.

In summary, our paper makes the following contributions:

• We present MAHJONG, a new heap abstraction that can

significantly scale an allocation-site-based points-to anal-

ysis for object-oriented programs while achieving nearly

the same precision for type-dependent clients.

• We formulate the problem of checking the type-consistency

of two objects as one of testing the equivalence of two

automata, which is solvable in almost linear time.

• We implement MAHJONG as a stand-alone open-source

tool. MAHJONG is simple (with only 1500 LOC of Java

in total) and drops easily on any allocation-site-based

points-to analysis.

• We conduct extensive experiments to evaluate the effec-

tiveness of MAHJONG in practice.

2. Motivation

For points-to analysis, type-dependent clients, such as call

graph construction, devirtualization and may-fail casting,

share similar needs: their precision depends on the types

of pointed-to objects rather than the pointed-to objects

themselves. For such clients, the conventional allocation-

site abstraction is often too fine-grained, contributing little

to improving their precision but rendering the underlying

points-to analysis unduly inefficient or eventually unscal-

1 A x = new A(); // oA1
2 A y = new A(); // oA2
3 A z = new A(); // oA3
4 x.f = new B(); // oB4
5 y.f = new C(); // oC5
6 z.f = new C(); // oC6
7 A a = z.f;

8 a.foo();

9 C c = (C) a;

10 class A {

11 A f;

12 void foo() {...}

13 }

14 class B extends A {

15 void foo() {...}

16 }

17 class C extends A {

18 void foo() {...}

19 }

Figure 1. An example program illustrating object merging.

able. In this paper, we aim to improve this by looking for

a lightweight alternative that satisfies the needs of type-

dependent clients, but not necessarily others such as may-

alias. To this end, we would like to avoid distinguishing two

objects if merging them loses no or little precision.

In Section 2.1, we see that blindly merging objects of

the same type is ineffective. In Section 2.2, we describe

our solution that merges objects representing equivalent au-

tomata only. For object-oriented programs, merging objects

amounts to merging their corresponding allocation sites.

2.1 Allocation-Type Abstraction: A Naive Solution

In this so-called allocation-type abstraction, all objects with

the same type are merged, with one object per type. As

previously noted, this naive solution often gains efficiency

but may incur a significant loss of precision [19, 27, 38, 51].

Example 2.1. Consider Figure 1, where oti represents the

abstract object of type t created at the allocation site at line

i. We will use this notation in the rest of the paper.

For the three type-dependent clients, call graph construc-

tion, devirtualization and may-fail casting, only lines 8 – 9

are relevant. According to an allocation-site-based Ander-

sen’s points-to analysis [4], x, y and z point to oA1 , oA2 and

oA3 , respectively. As x.f , y.f and z.f are not aliases, a points

to oC6 . Thus, a.foo() at line 8 is a mono-call and can thus be

devirtualized, and in addition, the cast (C) at line 9 is safe.

However, if oA1 , oA2 and oA3 are merged, then x.f , y.f and

z.f will be aliases, causing a to also point to oB4 . As a result,

a.foo() becomes a poly-call and thus non-devirtualizable. In

addition, the cast (C) is no longer considered safe. �

Consider pmd, a program analyzed by (1) 3obj—a 3-

object-sensitive points-to analysis [29] using the allocation-

site abstraction, (2) T-3obj—3obj using the allocation-type

abstraction, and (3) M-3obj—3obj using the MAHJONG

heap abstraction introduced in this paper. For 3obj, pmd

is analyzed in 14469.3 seconds, allowing 44004 call graph

edges to be discovered. T-3obj is the fastest (50.3 seconds),

but is the most imprecise (50666 call graph edges). In con-

trast, M-3obj is as precise as 3obj (44016 call graph edges)

but is also nearly as fast as T-3obj (127.7 seconds).
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Figure 2. Field points-to graph rooted at oT1 and oT2 .

2.2 MAHJONG: Our Solution

To address the needs of type-dependent clients, MAHJONG

is designed to maximally preserve the precision of the

allocation-site abstraction while reaping the efficiency of the

allocation-type abstraction as much as possible. For a given

program, we first build a heap abstraction by performing a

pre-analysis, i.e., a fast but imprecise allocation-site-based

Andersen’s points-to analysis [4] and then use it to guide

a subsequent points-to analysis. Based on the pre-analysis,

we define type-consistent objects that can be merged (Sec-

tion 2.2.1) and formulate the problem of checking the type-

consistency of two objects as one of testing the equivalence

of two automata in almost linear time (Section 2.2.2).

2.2.1 Defining Type-Consistent Objects

After the pre-analysis, the field points-to graph (FPG) is

available, representing the points-to information for the ob-

ject fields. To facilitate a subsequent reduction of the prob-

lem of checking type-consistency as one of testing the equiv-

alence of automata, we introduce the field points-to graph

rooted at an object o as Go = (H,F , α, o, T , τ). H is the set

of objects reachable from o. F is the set of field names tra-

versed along the way. The points-to relations for the object

fields are defined by a field points-to map α : H × F 7→
P(H). T is the set of types of the objects in H. The object-

to-type map τ : H 7→ T reveals the type of an object.

Figure 2 gives the field points-to graphs rooted at oT1 and

oT2 , by using the same notation for objects in Figure 1.

Example 2.2. Consider oT2 first in Figure 2. GoT
2

= (H,F ,

α, oT2 , T , τ). H = {oT2 , o
U
4 , o

X
6 , oY8 }; F = {f, g, h, k};

α[oT2 , f ] = {oU4 }, α[oU4 , h] = {oY8 }, α[oT2 , g] = {oX6 },

and α[oX6 , k] = {oY8 }; T = {T, U,X, Y }; and τ[oT2 ] = T ,

τ[oU4 ] = U , τ[oX6 ] = X , and τ[oY8 ] = Y . Similarly, GoT
1

can

be constructed. �

Unlike the allocation-type abstraction, where all the ob-

jects with the same type are merged blindly, we will merge

so-called type-consistent objects, thereby avoiding the im-

precision introduced by the allocation-type abstraction.

Let f̄ = f1.f2. · · · .fn, where n > 0, be a sequence of

field names. For the field points-to graph Go rooted at an

object o, we write pts(o.f̄) to represent the set of objects

that can be reached from o along any path of points-to edges

labeled by f1, f2, . . . , fn in Go in that order. In Figure 2,

pts(oT1 .f) = {oU3 } and pts(oT1 .f.h) = {oY7 , o
Y
9 }.

Two objects with the same type are type-consistent if

traversing from the two objects along the same sequence of

field names always lead to objects of one single type.

Definition 2.1 (Type-Consistent Objects). Two objects, oi
and oj , with the same type are said to be type-consistent,

denoted oi ≡ oj , if for every sequence of field names,

f̄ = f1.f2. · · · .fn, the following two conditions hold:

1. {τ[o] | o ∈ pts(oi.f̄)} = {τ[o] | o ∈ pts(oj .f̄)}, and

2.

∣

∣

∣
{τ[o] | o ∈ pts(oi.f̄)}

∣

∣

∣
= 1.

In Figure 2, oT1 and oT2 are type-consistent. For the objects

reached from oT1 and oT2 , along f , f.h, g and g.k, their sets

of types are {U}, {Y }, {X} and {Y }, respectively.

We illustrate the intuition behind the notion of type-

consistency with an example discussed below.

Example 2.3. Let us return to Figure 1, for which the

allocation-type abstraction will merge oA1 , oA2 and oA3 (Sec-

tion 2.1). By Definition 2.1, oA2 and oA3 are type-consistent

(as oA2 .f points to oC5 and oA3 .f points to oC6 ) but oA1 is not

type-consistent with any (as oA1 .f points to oB4 ). After oA2
and oA3 are merged, y.f and z.f are regarded as aliases.

Thus, a will point to not only oC6 as before but also oC5 spu-

riously. However, as oC5 and oC6 have the same type C, the

precision of call graph construction and devirtualization at

line 8 and may-fail casting at line 9 will not be affected. �

Let us examine Definition 2.1. Condition 1 is self-

explanatory in order to maximally preserve precision for

type-dependent clients. What is the rationale behind Con-

dition 2? The pre-analysis is fast but imprecise. Enforcing

Condition 2 maximally avoids precision loss, as shown below.

f 
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Figure 3. Illustrating Condition 2 in Definition 2.1.

Example 2.4. Suppose oTi .f and oTj .f point to both oX1
and oY2 during the pre-analysis (Figure 3(a)) but oX1 and oY2 ,

respectively, in a more precise allocation-site-based points-

to analysis, A (Figure 3(b)). If Condition 2 is ignored, oTi
and oTj will become type-consistent according to the pre-

analysis and thus merged into, say, oTk (represented by oTi
or oTj ). Running A with this new abstraction will result in

precision loss, as oTi .f and oTj .f now point to objects of

types X and Y (Figure 3(c)). �

In Definition 2.1, the type-consistency relation ≡ is an

equivalence relation. It is straightforward to verify that ≡ is

reflexive, symmetric and transitive.

Let H be the set of all abstract objects in the program.
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Figure 4. The mapping of a field points-to graph rooted at an object to a sequential automaton.

Definition 2.2 (MAHJONG’s Heap Abstraction). Given the

quotient set, H / ≡, MAHJONG will merge all the objects in

the same equivalence class into one object.

Therefore, the key insight behind our new heap abstrac-

tion is not to distinguish two (container) objects of the same

type if both containers store the objects of the same type at

all their corresponding nested sub-containers.

How do we check the type-consistency of two objects

efficiently, especially for large programs with a large number

of heap objects, field names and class types? Enumerating all

the possible field access paths f̄ as required in Definition 2.1,

especially in the presence of cycles, may be exponential in

terms of the number of edges traversed [28, 34], causing

the pre-analysis to be too inefficient or even unscalable. We

describe a fast and elegant solution below.

2.2.2 Merging Equivalent Automata

We transform the problem of checking the type-consistency

of two objects into one of testing the equivalence of two au-

tomata. Figure 4 relates the field points-to graph rooted at

an object o, Go = (H,F , α, o, T , τ), to a 6-tuple sequential

automaton Ao = (Q,Σ, δ, qo,Γ, γ) [1], which is more gen-

eral than a traditional (5-tuple) automaton. In fact, a 5-tuple

automaton can be turned into a 6-tuple automaton, if its ac-

cepting (acc) and non-accepting (non-acc) states are distin-

guished by γ : Q 7→ Γ, where Γ = {acc, non-acc}.

Example 2.5. Continuing from Example 2.2 (Figure 2), the

automaton AoT
2

for GoT
2

= (H,F , α, oT2 , T , τ) is obtained

according to Figure 4. Similarly, AoT
1

is constructed. �

The behavior of Ao, which can be an NFA (consisting of

multiple edges with the same label leaving a state), is:

βAo
: Σ∗ → P(Γ)

If Ao finally reaches the states, s1, s2, · · · , sn, after having

read an input w in Σ∗, then βAo
(w) = ∪n

i=1γ[si].
Let oT1 and oT2 be two objects with the same type T . Let

their automata AoT
1

and AoT
2

be built as shown in Figure 4.

oT1 and oT2 are type-consistent if, for every input w in Σ∗, (1)

βA
oT
1

(w) = βA
oT
2

(w) (Condition 1 of Definition 2.1) and

(2) |βA
oT
1

(w)| = 1 (Condition 2 of Definition 2.1).

Therefore, we have reduced the problem of checking the

type-consistency of oT1 and oT2 to one of testing the equiva-

lence of their corresponding automata AoT
1

and AoT
2

, which

is solvable by the Hopcroft-Karp algorithm [18] with minor

modifications. The worst-case time complexity is O(|Σ| ×
|Qlarger|), which is almost linear in terms of |Qlarger|, where

Qlarger is the set of states of the larger automaton [18].

Example 2.6. Continuing from Example 2.5, we see easily

that oT1 and oT2 are type-consistent (Figure 2) since their

corresponding automata AoT
1

and AoT
2

are equivalent. �

3. MAHJONG

We first give an overview of MAHJONG that consists of four

components (Section 3.1). We then describe each component

in detail (Sections 3.2 – 3.5). Finally, we discuss MAHJONG-

based points-to analysis (Section 3.6).

3.1 Overview

As shown in Figure 5, MAHJONG takes the field points-to

graph (FPG) computed by a pre-analysis (Section 2.2.1) as

input and builds a heap abstraction (Definition 2.2) to be

used by a subsequent points-to analysis. The pre-analysis is

fast but imprecise, by using Andersen’s algorithm [4] with

the allocation-site abstraction, context-insensitively. The

subsequent points-to analysis will be more precise, usually

performed context-sensitively, especially for object-oriented

programs, based on the MAHJONG heap abstraction.

MAHJONG iteratively picks a pair of objects oTi and oTj
with the same type T and merges them if they are type-

consistent, until no such pair can be found. Given oTi and oTj ,

their corresponding NFAs, NFAoT
i

and NFAoT
j

, are first built

by using the NFA Builder. Then the two NFAs are converted

into their equivalent DFAs, DFAoT
i

and DFAoT
j

, by using the

DFA Converter. Next, the Automata Equivalence Checker

determines whether DFAoT
i

and DFAoT
j

are equivalent or not.

Finally, the Heap Modeler outputs a new heap abstraction.

The detailed algorithms are given in Section 4.

3.2 The NFA Builder

The NFA builder takes an object o, with the field points-to

graph Go rooted at o, and constructs a 6-tuple NFA Ao =
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Figure 5. Overview of MAHJONG.

(Q,Σ, δ, q0,Γ, γ) according to the mapping, as shown in

Figure 4. In fact, Ao can be immediately read off from Go.

3.3 The DFA Converter

The DFA Converter converts an NFA to an equivalent DFA

based on the subset construction algorithm [2] with minor

modifications. The resulting DFA is still a 6-tuple sequential

automaton except that it is deterministic.

3.4 The Automata Equivalence Checker

The Automata Equivalence Checker tests the equivalence

of two DFAs by applying a classic Hopcroft-Karp algo-

rithm [18] with minor modifications in almost linear time.

3.5 The Heap Modeler

After all type-consistent objects have been found, the type-

consistency equivalence relation ≡ given in Definition 2.1

becomes fully constructed. By Definition 2.2, the new heap

abstraction found is simply given by H / ≡. For every

equivalent class [oTi ] ∈ H / ≡, a representative object oTj
is arbitrarily picked to substitute for the other objects in the

class. Essentially, the allocation sites for all objects in [oTi ]
are merged and represented by the allocation site of oTj only.

To enable a points-to analysis to use our new heap ab-

straction, we only need to change its rule for handling allo-

cation sites. Given i : x = new T() in a Java program, where

oTj is a representative for [oTi ], x is made to point to oTj .

3.6 MAHJONG-based Points-To Analysis

Let A be an allocation-site-based points-to analysis, which is

either call-site-sensitive [15, 22, 36, 42, 51], object-sensitive

[29, 40, 48] or type-sensitive [39]. We first discuss how to

obtain M-A, a MAHJONG-based points-to analysis, from A
(Section 3.6.1). We then discuss briefly the soundness and

precision of M-A relative to A for type-dependent clients.

3.6.1 Obtaining M-A from A

In a context-sensitive points-to analysis, local variables are

analyzed context-sensitively by distinguishing the calling

contexts for a method. Heap objects are modeled context-

sensitively by distinguishing the calling contexts for alloca-

tion sites. Different context-sensitivity are distinguished by

different kinds of context elements used, as discussed below.

We obtain M-A from A by first replacing A’s allocation-

site abstraction with the MAHJONG heap abstraction. We

then need to make minor modifications to A to enable M-

A to handle merged objects effectively.

Regardless of whether A is call-site-, object- or type-

sensitive, M-A will always model a merged object o context-

insensitively. There would be otherwise of little benefit in

modeling o context-sensitively, since the objects accessed by

o.f1.f2. · · · .fn for any f1.f2. · · · .fn under different con-

texts are expected to have the same type, in practice. Below

we discuss how the calling contexts for methods are modi-

fied, if needed, when they are related to merged objects.

Call-Site-Sensitivity A k-call-site-sensitive points-to anal-

ysis, i.e., a k-CFA [37] separates information on local vari-

ables per call-stack (i.e., sequence of k call-sites) of method

invocations that lead to the current method. By convention,

a sequence of k− 1 call-sites is used as a calling context for

an allocation site [20, 39, 48].

If A is k-call-site-sensitive [37], then M-A behaves iden-

tically as A in handling methods. For the reason mentioned

above, M-A models the merged objects context-insensitively

but everything else context-sensitively as in A.

Object-Sensitivity k-object-sensitivity is similar to k-call-

site-sensitivity except that allocation sites rather than call

sites are used as context elements [29]. Let oi be an ab-

stract object identified by its allocation site i. In k-object-

sensitivity, the object oi at allocation site i is modeled

context-sensitively by a calling context [oik−1
, . . . , oi1 ] (of

length k − 1), where ij is the allocation site for the re-

ceiver object oij of the method that contains ij−1 (with

i0 = i). If x points to an object oi modeled under a con-

text [oik−1
, . . . , oi1 ], then the k-object-sensitive calling con-

text used for analyzing a callee of a method call x.foo() is

[oik−1
, . . . , oi1 , oi].

If A is a k-object-sensitive points-to analysis, M-A
models merged objects context-insensitively, i.e., object-

insensitively but everything else objective-sensitively as in

A. As a result, calling contexts that contain merged objects
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as context elements are modified accordingly. For an object

o that is used in a calling context under A, o is replaced by

a representative of [o] ∈ H / ≡ (Section 3.5) under M-A.

In other words, if o is merged with some type-consistent

objects, then its representative is used, instead.

Type-Sensitivity To trade precision for efficiency, k-type-

sensitivity is derived from k-object-sensitivity by replacing

every object in a calling context with the class type that

contains the corresponding allocation site for the object [39].

If A is a k-type-sensitive analysis obtained from its corre-

sponding k-object-sensitive analysis A′, then M-A is simply

obtained from M-A′ in the same type-sensitive manner.

3.6.2 Soundness and Precision of M-A over A

The soundness of M-A is easy to establish. If A is sound,

then M-A is sound as the MAHJONG heap abstraction is

coarser than the allocation-site abstraction used in A.

We discuss some insights below on why merging type-

consistent objects enables M-A to maximally preserve the

precision of A for type-dependent clients. This is true for all

three types of context-sensitivity as validated later.

We first describe a rarely occurring subtle case, the null-

field problem, illustrated in Figure 6, due to the imprecision

of the pre-analysis, causing precision loss for all the three

types of MAHJONG-based context-sensitivity.

Example 3.1. Suppose oTi .f and oTj .f both point to oX1
during the pre-analysis (Figure 6(a)) but oX1 and null, re-

spectively, in A (Figure 6(b)). In M-A, oTi and oTj are type-

consistent and thus merged into oTk (represented by either oTi
or oTj ), M-A is less precise, as oTj .f , which points to null

in A, now points to an object of type X (Figure 6(c)). �

(a) Pre-Analysis (b) (c)

null 

f 
O 
T 
i O 

X 
1 

f 
O 
T 
j O 

X 
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O 
T 
k 

M-

f 
O 
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X 
1 

f 
O 
T 
j 

f 
O 
X 
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Figure 6. Illustrating the null-field problem.

If A is call-site-sensitive, M-A is as precise as A for a

type-dependent client if the null-field problem never occurs

in a program analyzed by A. Recall that the pre-analysis

is no more precise than A. By Definition 2.1, the objects

reached from o along the same sequence of field accesses

must have exactly the same type when o is modeled both

context-sensitively under A and context-insensitively under

M-A, resulting in the same precision in both cases. In gen-

eral, M-A is no more precise than A due to the null-field

problem but very close to A as the null-fields are rare.

If A is object-sensitive, then M-A is no more precise than

A for type-dependent clients, as some heap objects that are

used in distinguishing different contexts in A are merged by

MAHJONG if they are type-consistent. However, this hardly

hurts the precision, making M-A nearly as precise as A for

type-dependent clients, in practice. The key insight behind

object-sensitivity [29] is to distinguish the side-effects of dif-

ferent receiver objects of an instance method foo() by ana-

lyzing it under multiple calling contexts, one per receiver ob-

ject. By merging a set of type-consistent receiver objects for

foo(), we end up achieving a significant performance bene-

fit at little precision loss by analyzing foo() under the same

context by M-A rather than separately but unnecessarily by

A for these receiver objects. For type-dependent clients, this

represents a generalization of object-sensitivity.

If A is type-sensitive, then M-A is nearly as precise

as (sometimes slightly better or worse than) A for type-

dependent clients, in practice. Consider an equivalence class

[o] = {o1, . . . , on} ∈ H / ≡ (Definition 2.2) formed

by the MAHJONG heap abstraction. In A, every oi that is

used as a context element in a calling context is replaced

by the class type that contains the allocation site for oi. In

M-A, o1, . . . , on are merged and replaced by the class type

that contains the allocation site for a representative in [o].
Thus, the MAHJONG heap abstraction can be coarser than

the allocation-site abstraction for some methods and finer

for some others in partitioning their calling contexts, which

depends on the representatives chosen.

Class T

alloc site 1:
1O
A
// 1O

A f
4O
X

2O
A
// 2O

A f
5O
Y

Class U

3O
A

// 3O
A f

6O
X

ktype: 

alloc site 2:

alloc site 3:

M-ktype: 

Alloc Sites 1 and 2 Abstracted, Resp., as:

 T and T  U and T if 1O
A

are merged as and 3O
A

3O
A

Figure 7. Precision of M-ktype over ktype.

Let us see how the choice of representative for an equiv-

alence class affects the precision of M-ktype.

Example 3.2. In Figure 7, ktype (k-type-sensitive analysis)

will represent the allocation sites 1 and 2 by T. Thus, the

two allocation sites that are distinguished by kobj (k-object-

sensitive analysis) are merged. According to MAHJONG, oA1
and oA3 are type-consistent, falling into the same equivalence

class. If oA3 happens to be selected as a representative, then

M-ktype will be able to distinguish the allocation sites 1
and 2 by U and T, respectively. However, if oA1 is selected

as the representative (not shown in Figure 7), then M-ktype

will merge the allocation sites 1, 2 and 3 by using T as the

context, and become less precise than ktype.

However, the choice of representative for an equivalence

class [o] = {o1, . . . , on} ∈ H / ≡ does not affect the

soundness of M-ktype. Regardless of what object is selected,

replacing oi in a context used in the corresponding kobj

by the containing type of a representative in [o] in M-ktype

always yields a context abstraction that is either identical or

coarser, by the definition of type-sensitivity [39].
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4. Algorithms

We present the algorithms used in MAHJONG. In Sec-

tion 4.1, we give some domains used and then the main

algorithm. In Sections 4.2 – 4.5, we describe the algorithms

of its four components introduced in Sections 3.2 – 3.5.

4.1 MAHJONG

For a program, we use the three domains: (1) H is the set of

all abstract heap objects (i.e., allocation sites), (2) F is the

set of all field names, and (3) T is the set of all types. Note

that we have used H earlier in Definition 2.2.

Now, we can formally define the input and output of

MAHJONG. MAHJONG takes a field points-to graph, FPG =
(N, E), which is a directed weighted graph, as input. A node

oi ∈ N = H represents a heap object in the program. An

edge (oi, f, oj) ∈ E ⊆ N× F× N indicates that oi.f points

to oj . We assume that the FPG contains a dummy node onull
to represent null. If oi.f = null, then (oi, f, onull) ∈ E. We

also assume (onull, f, onull) ∈ E for every field f ∈ F.

The output of MAHJONG is a new heap abstraction, rep-

resented by a merged object map, MOM ⊆ H → H, which

relates an object in an equivalence class in H / ≡ to its rep-

resentative object (as described in Section 3.5).

Algorithm 1: MAHJONG

Input : FPG (Field Points-to Graph)

Output: MOM (Merged Object Map)

1 Let W be a new set

2 foreach o ∈ H do
3 Add {o} to W

4 foreach oi, oj ∈ H s.t. W .FIND(oi) 6= W .FIND(oj) do
5 if TYPEOF(oi) == TYPEOF(oj) and

6 SINGLETYPE-CHECK(oi, FPG) and

7 SINGLETYPE-CHECK(oj , FPG) then

8 NFAoi = NFA-BUILDER(oi, FPG)

9 NFAoj = NFA-BUILDER(oj , FPG)

10 DFAoi = DFA-CONVERTER(NFAoi)

11 DFAoj = DFA-CONVERTER(NFAoj)

12 if EQUIV-CHECKER(DFAoi, DFAoj) then
13 W .UNION(oi, oj)

14 Let MOM be a new map

15 foreach o ∈ H do
16 MOM[o] = W .FIND(o)

17 return MOM

Algorithm 1 gives the main algorithm. To facilitate merg-

ing type-consistent objects, we make use of the concept of

disjoint sets [11]. In a set S of disjoint sets, each disjoint set

is identified by a representative, which is some member of

the disjoint set. We make use of two classic operations over

disjoint sets, UNION and FIND. S.UNION(x, y) unites the

disjoint sets in S that contain x and y, say Sx and Sy , into

a new disjoint set that is the union of the two, adds it to S,

and destroys Sx and Sy in S. The representative of the re-

sulting set is any member of Sx ∪Sy . S.FIND(x) returns the

representative of the disjoint set in S that contains x.

MAHJONG first initializes W by adding to it a singleton

set for each object (lines 1 – 3). Then it iterates over every

pair of objects, oi and oj in H, that are not yet merged, and

merges the pair if both are type-consistent (lines 4 – 13).

According to line 5, oi and oj are mergeable only if both

have the same type. The function TYPEOF : H → T returns

the type of a given object and a special type for onull.

To check the type consistency of oi and oj by Defini-

tion 2.1 efficiently, we handle its two conditions separately,

with Condition 2 in lines 6 – 7 and Condition 1 in lines 8

– 12. In lines 6 – 7, the function SINGLETYPE-CHECK :
H×FPG →{TRUE, FALSE} is applied to see if Condition 2

holds for both oi and oj . If so, MAHJONG then proceeds to

build the NFAs for the two objects (Section 4.2), convert the

NFAs to their equivalent DFAs (Section 4.3), and finally, test

their equivalence (Section 4.4). If the two DFAs are equiv-

alent, then MAHJONG calls W .UNION(oi, oj) to merge oi
and oj at line 13. Finally, in lines 14 – 16, MAHJONG builds

a new heap abstraction as desired (Section 4.5).

4.2 The NFA Builder

Given an object o, Algorithm 2 (NFA-BUILDER) builds

an NFA, Ao =(Q,Σ, δ, q0,Γ, γ), according to the mapping

from the field points-to graph rooted at o to Ao in Figure 4.

Algorithm 2: NFA-BUILDER

Input :
o (Input object)
FPG = (N, E) (Field Points-to Graph)

Output: NFA = (Q,Σ, δ, q0,Γ, γ)
1 q0 = o
2 Let Q be a set of objects reachable from o in FPG
3 Let Σ and Γ be two new sets

4 Let γ and δ be two new maps

5 foreach oi ∈ Q do
6 Σ = Σ ∪ FIELDSOF(oi)

7 Γ = Γ ∪ { TYPEOF(oi) }
8 γ[oi] = TYPEOF(oi)

9 foreach (oi, f, oj) ∈ E do
10 if oi ∈ Q then
11 Add oj to δ[oi, f ]

12 return NFA = (Q,Σ, δ, q0,Γ, γ)

NFA-BUILDER constructs all the six components for Ao.

Its initial state q0 is simply o (line 1). Q is the set of objects

reachable from o in FPG (line 2). The objects in Q are

iterated over to build Σ (set of input symbols), Γ (set of

output symbols), and γ (output map) at lines 5 – 8. The

function FIELDSOF : H → P(F) returns the fields of a

given object. Finally, the relevant edges in FPG are traversed

to build the state transition map δ (lines 9 – 11).

4.3 The DFA Converter

Algorithm 3 (DFA-CONVERTER) converts an NFA to its

equivalent DFA by using the subset construction [2].
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There are three minor differences. First, we do not need to

handle (non-existent) ǫ-transitions. Second, we can find the

next states of a DFA state q more efficiently. In the general

case, all input symbols must be examined. In our case (lines

7 – 9), we only need to iterate over the fields (input symbols)

of an arbitrarily picked object (an NFA state) in q to find its

next states. Due to SINGLETYPE-CHECK in lines 6 – 7 of

Algorithm 1, the objects grouped in a DFA state q must have

the same type. Finally, we need to compute Γ′ (set of output

symbols) and γ′ (output map) at lines 14 – 16,

Algorithm 3: DFA-CONVERTER

Input : NFA = (Q,Σ, δ, q0,Γ, γ)
Output: DFA = (Q′,Σ′, δ′, q′0,Γ

′, γ′)
1 q′0 = {q0}
2 Σ′ = Σ
3 Let Q′ and Γ′ be two new sets

4 Let δ′ and γ′ be two new maps

5 Add q′0 as an unmarked state to Q′

6 while there is an unmarked state q ∈ Q′ do
7 Mark q

8 Pick any oi from q

9 foreach f ∈ FIELDSOF(oi) do
10 q′ = { δ[oj , f ] | oj ∈ q }
11 if q′ /∈ Q′ then
12 Add q′ as an unmarked state to Q′

13 δ′[q, f ] = q′

14 foreach q ∈ Q′ do
15 γ′[q] = { TYPEOF(oi) | oi ∈ q }
16 Γ′ = Γ′ ∪ γ′[q]

17 return DFA = (Q′,Σ′, δ′, q′0,Γ
′, γ′)

4.4 The Automata Equivalence Checker

Algorithm 4 (EQUIV-CHECKER) tests the equivalence of

two 6-tuple DFAs, by applying a Hopcroft-Karp algorithm

that was proposed for two 5-tuple DFAs [18] with minor

modifications at line 19 on testing whether all states in s ∈ V
have the same type. As discussed in Section 2.2.2, a 5-tuple

DFA can be modeled as a special case of a 6-tuple DFA.

EQUIV-CHECKER iterates over all fields f ∈ Σ (line 14)

and queries the transition map δ to obtain the next states (line

15). By convention, if δ[q, f ] is not defined, since the objects

in q do not have the field f , we assume that δ[q, f ] = qerror.
In addition, γ[qerror] returns a special type for qerror.

4.5 The Heap Modeler

After Algorithm 1 has terminated, we have W = H / ≡ in

its line 16. Then MOM specifies the new heap abstraction

given in Definition 2.2, as discussed in Section 3.5.

5. Implementation

We have implemented MAHJONG as a standalone tool in a

total of only 1500 LOC in Java to build a new heap abstrac-

tion by merging equivalent automata. MAHJONG is designed

Algorithm 4: EQUIV-CHECKER

Input :
DFA1 = (Q1,Σ1, δ1, q1,Γ1, γ1)
DFA2 = (Q2,Σ2, δ2, q2,Γ2, γ2)

Output: TRUE or FALSE (Are DFA1 and DFA2 equivalent?)

1 Q = Q1 ∪ Q2

2 Σ = Σ1 ∪ Σ2

3 δ[q, f ] =

{

δ1[q, f ] if q ∈ Q1

δ2[q, f ] if q ∈ Q2

4 Γ = Γ1 ∪ Γ2

5 γ[q] =

{

γ1[q] if q ∈ Q1

γ2[q] if q ∈ Q2

6 DFA = (Q,Σ, δ, q1,Γ, γ)
7 Let V be a new set

8 foreach q ∈ Q do
9 Add {q} to V

10 V .UNION(q1, q2)

11 Push (q1, q2) to a new stack, STACK

12 while STACK is not empty do
13 Pop (p1, p2) from STACK

14 foreach f ∈ Σ do
15 r1 =V.FIND(δ[p1, f ]), r2 =V.FIND(δ[p2, f ])
16 if r1 6= r2 then
17 V .UNION(r1, r2)

18 Push (r1, r2) to STACK

19 return

{

TRUE if ∀s ∈ V : ∀p, q ∈ s : γ[p] = γ[q]

FALSE otherwise

to work with mainstream allocation-site-based points-to

analysis frameworks such as CHORD [10], WALA [50],

SOOT [49] and DOOP [14]. To demonstrate its effective-

ness, we have integrated MAHJONG with DOOP [9, 14],

a state-of-the-art whole-program points-to analysis frame-

work for Java. MAHJONG is released as an open-source tool

at http://www.cse.unsw.edu.au/~corg/mahjong. Be-

low we discuss three major optimizations.

Disjoint-Set Forest In Algorithms 1 and 4, disjoint sets are

used. For efficiency, we have implemented a set of disjoint

sets as a disjoint-set forest, by representing each disjoint set

as a tree with its root being its representative. Thus, UNION

amounts to linking the roots of different trees while FIND

returns the root of a tree. To improve the efficiency further,

we have also implemented two heuristics, union by rank and

path compression [11]. As a result, the average execution

time of each UNION/FIND operation over a disjoint-set for-

est can be reduced to nearly O(1) [11].

Shared Sequential Automata In Algorithms 2 and 3, new

automata are frequently created. However, different au-

tomata can be partly identical, since their common parts

correspond to the same objects. Instead of always creating

new automata, we allow different automata to share their

common parts. This optimization reduces significantly both

the time and space costs of the overall algorithm.
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Parallel Type-Consistency Checks A synchronization-

free parallelization scheme is used. This is achieved by re-

quiring different threads to merge objects of different types

(with every thread executing lines 6 – 13 of Algorithm 1). To

avoid synchronizations, object merging takes place only at

line 13 of Algorithm 1, and in addition, all shared automata

are constructed beforehand and concurrently read only.

6. Evaluation

We show that MAHJONG is effective in significantly scal-

ing context-sensitive points-to analyses for large Java pro-

grams while achieving nearly the same precision for type-

dependent clients. We address two major research questions:

RQ1. Is MAHJONG effective as a pre-analysis?

(a) Is MAHJONG lightweight for large programs?

(b) Can MAHJONG avoid the allocation-site abstraction’s

heap over-partitioning for type-dependent clients?

RQ2. Is MAHJONG-based points-to analysis effective?

(a) Can MAHJONG accelerate different types of main-

stream context-sensitive points-to analyses?

(b) Can MAHJONG achieve comparable precision as the

allocation-site abstraction for type-dependent clients?

Type-Dependent Clients We consider three representative

type-dependent clients, call graph construction, devirtualiza-

tion and may-fail casting, provided by DOOP [14].

Context-Sensitive Points-to Analyses We consider five

context-sensitive points-to analyses also from DOOP as

baselines. These cover the three main types of mainstream

context-sensitivity: call-site-sensitivity [15, 22, 36, 42, 51],

object-sensitivity [29, 40, 48] and type-sensitivity [39].

We also provide experimental evidence on why context-

insensitivity is inadequate for type-dependent clients.

Benchmarks We consider 12 large Java programs in-

cluding 3 popular applications findbugs, checkstyle

and JPC and all standard DaCapo benchmarks [12] except

jython and hsqldb as they are not scalable under 3 out

of the 5 baseline analyses with and without MAHJONG.

These programs are all analyzed with a large Java library

JDK1.6.0 45.

As a static reflection analysis may affect the efficiency

and precision of points-to analysis [24, 25, 38], we adopt the

same resolution results generated by a dynamic reflection

analysis tool, TAMIFLEX [8], in both the five baselines and

their corresponding MAHJONG-based points-to analyses.

Computing Platform We have done our experiments on a

Xeon E5-1620 3.7GHz machine with 128GB of RAM. The

analysis time of a program is the average of 3 runs.

Pre-Analysis For this, we use the fast context-insensitive

points-to analysis, denoted ci, provided by DOOP [14]. Dif-

ferent pair-wise type-consistency tests are performed in par-

allel, as discussed in Section 5, with 8 threads on 4 cores.

Table 2 presents the main results, which will be ana-

lyzed when our research questions are discussed below. For

a program, we consider the abstract objects reachable from

main() in both the application and library code.

6.1 RQ1: MAHJONG’s Effectiveness as a Pre-Analysis

6.1.1 Efficiency

The overall pre-analysis phase is fast, as shown in Column 2

of Table 2. For a program, its analysis time is broken down

into three components, taken by ci (the context-insensitive

points-to analysis), FPG (a module for building its FPG),

MAHJONG (for creating a new heap abstraction). For all the

12 programs, the average analysis time for ci is 62.3 seconds.

The runtime overheads for the other two are negligible.

The efficiency of MAHJONG cannot be over-emphasized,

as it could not otherwise be used as an enabling technol-

ogy for a subsequent points-to analysis. On average, a FPG

consists of 10073 objects of 1559 types with 2411 fields.

MAHJONG builds an NFA for each object in the FPG, with

its size measured in terms of its number of states. The av-

erage sizes of NFAs range from 356 in luindex to 3789

in eclipse, with an average of 992. For each program, the

smallest NFA always has one state only. Across all the pro-

grams, the sizes of their largest NFAs range from 1935 in

luindex to 10034 in eclipse. This costs MAHJONG only

an average of 3.8 seconds for each program. Such good per-

formance is due to both our design (by merging objects in

terms of merging equivalent automata) and several effective

optimizations performed (see Section 5).

6.1.2 Heap Partitioning

Figure 8 shows that MAHJONG can alleviate the heap over-

partitioning problem suffered by the allocation-site abstrac-

tion effectively for type-dependent clients. The allocation-

site abstraction creates an average of 10073 objects per pro-

gram, ranging from 6190 in luindex to 19529 in eclipse.

In contrast, MAHJONG creates an average of 3826 objects

per program, ranging from 2108 in luindex to 9414 in

eclipse. This represents an average reduction of 62%.

Let us examine checkstyle in detail. As shown in Fig-

ure 8, a total of 10888 objects are created by the allocation-

site abstraction but only 4028 objects by MAHJONG.

Given the heap partitioned as H / ≡ for checkstyle,

Figure 9 relates the number of equivalence classes with

a particular equivalence class size. In the left-most point

marked by (1, 3769), for example, there are 3769 equiva-

lence classes containing one object each. Thus, neither ob-

ject is merged with any other objects.

Let us examine some equivalence classes, given in Ta-

ble 1, with their ranks (measured in decreasing order of their

sizes) shown as well. For StringBuilder (Row 1), all their

objects are type-consistent (reaching only char[] objects
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Figure 8. Number of abstract objects created by the

allocation-site abstraction and MAHJONG.
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Figure 9. Object merging in checkstyle.

Equiv. Class Total No.
Rank Type

Size of Objects
Remarks

1 java.lang.StringBuilder 1303 1303 char[]

2 java.lang.Object[] 690 1353 String

12 antlr.ASTPair 108 109 DetailAST

55 java.lang.Object[] 12 1353 Integer

65 java.lang.Object[] 9 1353 QName

260 antlr.ASTPair 1 109 null

Table 1. Some equivalence classes in checkstyle.

along any field access path) and thus merged. This is the

largest equivalence class, corresponding to the right-most

point marked by (1303, 1) in Figure 9.

For some other types like Object[] (Rows 2, 4 and

5), blindly merging all its objects would be imprecise

(Section 2.1). In contrast, MAHJONG merges only type-

consistent objects in order to maximally preserve preci-

sion for type-dependent clients. Thus, MAHJONG ends up

with different equivalent classes containing objects of type

Object[] for storing objects of different types, such as

String (Row 2), Integer (Row 4), and QName (Row 5).

Finally, we show that MAHJONG can also distinguish

null from other objects, because null may affect preci-

sion as explained in Section 3.6. MAHJONG partitions 109

objects of ASTPair into two equivalence classes, with one

containing 108 objects whose fields point to objects of type

DetailAST (Row 3) and the other that contains one single

object with null fields (Row 6).

6.2 RQ2: MAHJONG-based Points-to Analysis

Mainstream points-to analyses for Java programs rely on

the allocation-site-based abstraction to model the heap [20–

22, 39, 40, 42, 48]. We demonstrate experimentally that

MAHJONG is a better alternative for type-dependent clients.

Concretely, we show that MAHJONG can achieve the fol-

lowing goal in the real world. Suppose a software developer

intends to apply a points-to analysis to a program under a

given time budget. MAHJONG opens up new opportunities

for the developer to either accelerate the chosen points-to

analysis or replace it with a more precise but more expen-

sive points-to analysis under still the same budget.

6.2.1 Baselines and Metrics

We consider three types of context-sensitive points-to anal-

yses: call-site-sensitivity (cs), object-sensitivity (obj) and

type-sensitivity (type). Specifically, five points-to analyses

in DOOP [14] are selected as baselines: 2cs (2-call-site-

sensitive), 2obj (2-object-sensitive), 3obj (3-object-sensitive),

2type (2-type-sensitive), and 3type (3-type-sensitive). In

principle, 2cs is not compatible with the others, 3A is no

less precise than 2A, and kobj is no less precise than ktype.

As for 1A, it has been demonstrated that its precision is

significantly less than that of kA, where k > 1 [20, 39].

As a result, 1A is not used in the recent points-to analysis

literature [15, 40, 48] and is thus omitted in our baselines.

Currently, each baseline kA uses the allocation-site ab-

straction. M-kA denotes the version of kA that uses the heap

abstraction provided by MAHJONG. Thus, there are also five

MAHJONG-based points-to analyses altogether.

The three type-dependent clients, call graph construction,

devirtualization and may-fail casting, are widely used in the

literature [20, 22, 39, 40, 48]. We consider the following

metrics: the number of call graph edges (#call graph edges),

the number of casting operations that may fail (#may-fail

casts), and the number of virtual call sites that cannot be

disambiguated into mono-calls (#poly call sites).

The time budget for each analysis is set to 5 hours.

6.2.2 Efficiency and Precision

Table 2 presents our results, showing clearly the effective-

ness of MAHJONG in boosting existing points-to analyses

while maintaining their precision for type-dependent clients.

For each program, five metrics are considered: “analysis

time”, “speedup”, “#may-fail casts”, “#poly call sites” and

“#call graph edges”. In all cases except “speedup”, smaller

is better. With “speedup” ignored, Table 2 contains 480 con-

crete results (= 4 metrics × 12 programs × 10 points-to anal-

yses (including the 5 baselines and 5 MAHJONG variants)).

In computing the speedup of M-kA over kA for a pro-

gram, the pre-analysis time on the program is ignored. There

are three reasons: (1) the points-to information produced by
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Program Pre-analysis Metrics 2cs M-2cs 2type M-2type 3type M-3type 2obj M-2obj 3obj M-3obj

antlr

analysis time (sec.) 2790.7 373.6 63.6 45.5 459.3 61.0 116.2 36.7 8302.0 69.9

ci: 44.1s speedup 7.5X 1.4X 7.5X 3.2X 118.8X

FPG: 1.3s #may-fail casts 888 888 648 649 599 600 524 524 463 463

MAHJONG: 1.3s #poly call sites 1862 1862 1682 1685 1651 1654 1630 1633 1623 1626

#call graph edges 55153 55153 51427 51435 51168 51176 51062 51070 51035 51043

fop

analysis time (sec.) 1510.3 430.5 66.1 46.6 526.9 67.8 73.8 36.7 8647.0 70.0

ci: 34.7s speedup 3.5X 1.4X 7.8X 2.0X 123.5X

FPG: 0.7s #may-fail casts 682 682 527 517 479 469 428 428 375 375

MAHJONG: 1.1s #poly call sites 1068 1068 872 875 841 844 821 824 814 817

#call graph edges 38154 38154 34580 34588 34321 34329 34211 34219 34184 34192

luindex

analysis time (sec.) 1480.2 301.9 45.4 30.1 526.4 42.8 72.9 28.0 10651.9 63.1

ci: 26.2s speedup 4.9X 1.5X 12.3X 2.6X 168.8X

FPG: 0.8s #may-fail casts 701 701 522 513 473 464 413 413 358 358

MAHJONG: 1.1s #poly call sites 1157 1157 981 984 946 949 922 925 915 918

#call graph edges 37445 37445 33760 33769 33496 33505 33383 33392 33356 33365

pmd

analysis time (sec.) 2099.4 547.6 92.2 62.2 906.1 82.9 145.1 82.3 14469.3 127.7

ci: 44.8s speedup 3.8X 1.5X 10.9X 1.8X 113.3X

FPG: 1.4s #may-fail casts 1319 1319 1082 1072 1014 1004 930 930 871 871

MAHJONG: 1.5s #poly call sites 1424 1424 1210 1213 1175 1179 1137 1140 1130 1133

#call graph edges 49731 49734 44768 44779 44419 44433 44070 44081 44004 44016

bloat

analysis time (sec.) 7769.3 5350.9 87.2 67.3 533.6 124.5 3611.9 3501.5 >5h >5h

ci: 37.7s speedup 1.5X 1.3X 4.3X 1.03X –

FPG: 2.4s #may-fail casts 1840 1840 1614 1608 1521 1515 1302 1302 – –

MAHJONG: 1.9s #poly call sites 2005 2005 1811 1814 1673 1676 1567 1571 – –

#call graph edges 64102 64102 57619 57625 57136 57142 56364 56374 – –

chart

analysis time (sec.) 5476.2 1665.9 174.0 86.8 2967.8 518.5 997.9 279.8 >5h >5h

ci: 89.6s speedup 3.3X 2.0X 5.7X 3.6X –

FPG: 2.3s #may-fail casts 2093 2093 1708 1699 1621 1612 1349 1349 – –

MAHJONG: 4.0s #poly call sites 2475 2475 2093 2096 2036 2039 2017 2020 – –

#call graph edges 81224 81238 72968 72974 72321 72327 72297 72317 – –

checkstyle

analysis time (sec.) 7644.8 3186.7 187.8 92.3 5120.6 379.8 1946.6 277.1 >5h 3103.7

ci: 66.6s speedup 2.4X 2.0X 13.5X 7.0X ∞

FPG: 3.0s #may-fail casts 1596 1601 1345 1334 1243 1231 1135 1140 – 1022

MAHJONG: 3.1s #poly call sites 2558 2558 2307 2311 2239 2243 2211 2215 – 2168

#call graph edges 75802 75822 67390 67419 66550 66572 66718 66751 – 65943

xalan

analysis time (sec.) 1996.1 464.4 99.0 57.7 1122.5 101.8 1816.8 247.3 >5h 1274.9

ci: 38.7s speedup 4.3X 1.7X 11.0X 7.3X ∞

FPG: 1.2s #may-fail casts 982 982 794 784 740 730 589 589 – 535

MAHJONG: 1.7s #poly call sites 1879 1879 1651 1654 1620 1623 1595 1598 – 1591

#call graph edges 50825 50825 46399 46407 46139 46147 45974 45982 – 45950

lusearch

analysis time (sec.) 1444.7 309.4 46.4 29.6 780.9 44.5 110.2 27.8 >5h 65.0

ci: 41.4s speedup 4.7X 1.6X 17.5X 4.0X ∞

FPG: 0.8s #may-fail casts 779 779 561 552 514 505 424 424 – 372

MAHJONG: 1.0s #poly call sites 1361 1361 1178 1181 1147 1150 1120 1123 – 1116

#call graph edges 40724 40724 36631 36640 36372 36381 36255 36264 – 36237

JPC

analysis time (sec.) 3464.1 1155.1 147.1 90.6 1509.8 340.5 477.2 306.0 >5h 5056.8

ci: 58.9s speedup 3.0X 1.6X 4.4X 1.6X ∞

FPG: 2.1s #may-fail casts 1828 1828 1595 1579 1507 1490 1381 1381 – 1226

MAHJONG: 4.5s #poly call sites 4749 4749 4379 4382 4321 4324 4275 4279 – 4139

#call graph edges 90111 90111 81723 81729 81251 81251 81031 81045 – 79370

findbugs

analysis time (sec.) 14923.8 5646.6 1229.3 107.4 >5h 171.7 >5h 174.2 >5h 524.1

ci: 90.6s speedup 2.6X 11.4X ∞ ∞ ∞

FPG: 4.6s #may-fail casts 2923 2928 2469 2458 – 2143 – 2074 – 1671

MAHJONG: 3.2s #poly call sites 4136 4136 3753 3756 – 3574 – 3565 – 3534

#call graph edges 100046 100063 89036 89054 – 87581 – 87929 – 86985

eclipse

analysis time (sec.) >5h >5h 2453.0 863.1 >5h 11316.5 >5h 15738.0 >5h >5h

ci: 174.1s speedup – 2.8X ∞ ∞ –

FPG: 15.5s #may-fail casts – – 4236 4223 – 3994 – 3662 – –

MAHJONG: 21.4s #poly call sites – – 9906 9910 – 9740 – 9724 – –

#call graph edges – – 163760 163768 – 161448 – 162137 – –

Table 2. Efficiency and precision metrics for all programs and analyses with and without MAHJONG. In all cases (except

speedup), lower is better. Symbol ∞ is used in speedup when a baseline analysis is not scalable but MAHJONG is scalable.
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“ci” in Table 2 may already exist and can be reused, (2) the

pre-analysis time is relatively small (compared to the analy-

sis time of a subsequent M-kA), and (3) the pre-analysis will

be used to drive many points-to analyses.

Improved Efficiency MAHJONG is versatile enough in ac-

celerating all the five points-to analyses with three different

types of context-sensitivity. For every program where M-kA
is scalable, a speedup over kA is obtained.

MAHJONG is highly effective in boosting performance.

For the programs where both kA and M-kA are scalable,

MAHJONG achieves an average speedup of 15.4X (rang-

ing from 1.03X by M-2obj/2obj for bloat to 168.8X by

M-3obj/3obj for luindex). Table 2 divides visually the 12

programs into two groups. For the top six, kA scales when-

ever M-kA scales. However, M-kA is faster than kA, achiev-

ing an average speedup of 22.2X. This is especially signif-

icantly for the most-precise configuration M-3obj/3obj. For

every program in the bottom six, MAHJONG enables using

a more precise points-to analysis that is not scalable if the

allocation-site abstraction is used instead.

Preserved Precision For every program, as shown in Ta-

ble 2, MAHJONG achieves nearly the same precision for ev-

ery client under every configuration M-kA/kA. Thus, merg-

ing type-consistent objects can maximally preserve preci-

sion as discussed in Section 3.6 and validated here.

Call-Site-Sensitivity M-2cs is no more precise than 2cs in

principle (Section 3.6) but nearly as precise in practice.

For devirtualization, M-2cs is equally as precise as 2cs.

For may-fail casting, M-2cs is negligibly worse than 2cs

(with an average precision loss of 0.04%), by report-

ing only 5 more may-fail casts each in checkstyle

and findbugs. For call graph construction, M-2cs is

also marginally worse (with an average precision loss of

0.006%), by including only a few extra edges in pmd (3),

chart (14), checkstyle (20), and findbugs (17).

Object-Sensitivity M-kobj is also no more precise than

kobj in principle (Section 3.6) but nearly as precise in

practice. For call graph construction, devirtualization and

may-fail casting, M-2obj experiences a small loss of pre-

cision of 0.02%, 0.23% and 0.04% over 2obj, respec-

tively, on average. For M-3obj over 3obj, these percent-

ages are 0.02%, 0.29% and 0.00%, respectively. For may-

fail casting, M-2obj is on a par with 2obj if checkstyle

is ignored, and M-3obj is equally as precise as 3obj.

Type-Sensitivity M-ktype may lose or gain precision com-

pared with ktype, as discussed in Section 3.6. For may-

fail casting, M-ktype is slightly more precise than ktype

in all the programs except antlr. The average precision

gains for M-2type/2type and M-3type/3type are 0.91%

and 1.11%, respectively. For the other two clients, M-

ktype is slightly less precise than ktype in every program.

For call graph construction and devirtualization, M-2type

experiences a small loss of precision of 0.02% and 0.18%

over 2type, respectively. In the case of M-3type/3type,

these percentages are 0.02% and 0.22%, respectively.

Importance of Context-Sensitivity Context-sensitivity is

significant for improving the precision of type-dependent

clients, measured by #may-fail casts, #poly call sites and

#call graph edges, in Table 2. Without context-sensitivity,

#may-fail casts, #poly call sites and #call graph edges will

be 2027, 3122 and 75162, respectively, on average, across

all the programs. With context-sensitivity (by using the

most precise MAHJONG-based points-to analysis for each

program, e.g., M-3obj for antlr and M-2obj for chart),

these numbers become substantially smaller: 1101, 2530 and

63994. This demonstrates convincingly the necessity of em-

bracing context-sensitivity even for type-dependent clients.

6.2.3 Discussion

We discuss two observations about some results in Table 2.

Speedups of M-3obj over 3obj MAHJONG is most impres-

sive in scaling 3obj, the most precise baseline used. For the

four programs, antlr, fop, luindex and pmd, where 3obj is

scalable, M-3obj is 131X faster, on average, while achieving

nearly the same precision for all the three clients. For the re-

maining eight, where 3obj is unscalable, M-3obj is scalable

for checkstyle, xalan, lusearch, JPC and fingbugs, by

spending an average of 33.42 minutes only.

Why does M-3obj/3obj deliver significantly better

speedups than M-2obj/2obj? By using one extra level of

context elements than 2obj, 3obj often incurs an exponential

growth in the number of contexts used. By merging type-

consistent objects, which happen to be used as context el-

ements at this extra level in 3obj, M-3obj can drastically

reduce the number of contexts used and thus accelerate the

analysis. Consider luindex, where the speedup achieved

by M-3obj/3obj is the highest obtained. The number of

context-sensitive points-to relations produced under 2obj is

9,255,034 but grows to 191,160,483 under 3obj, which are

both reduced significantly to 4,256,310 under M-3obj.

Unscalability of MAHJONG-based Points-to Analyses As

shown in Table 2, M-2cs is unscalable for eclipse and M-

3obj is unscalable for bloat, chart and eclipse. Why is

M-3obj scalable for some large programs such as findbugs

but unscalable for some small ones such as bloat? As

shown in Figure 8, MAHJONG creates 5233 objects for

findbugs but only 3107 objects for bloat.

M-3obj is unscalable for bloat possibly due to its object

structure used. Some methods are both invoked on many (ab-

stract) receiver objects and allocate many objects. Thus, the

number of contexts becomes extremely large. To alleviate

this problem, one solution is to use a coarser relation than ≡
given in Definition 2.1 so that more objects can be merged

together. Another solution is to apply 3obj only selectively

to parts of the program when moving from 2obj to 3obj.
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7. Related Work

We review only the work most closely related to (whole-

program) points-to analysis for object-oriented programs.

Points-to Analysis Context-sensitivity is essential in achiev-

ing good efficiency and precision trade-offs for Java pro-

grams [22, 23, 38, 41, 44]. There are three main flavors:

call-site-sensitivity, object-sensitivity, and type-sensitivity.

Call-site-sensitivity [15, 22, 36, 42, 51], i.e., k-CFA [37]

is often used to analyze C programs [6, 33, 45, 46, 52]. To

better exploit the object-oriented features in Java, object-

sensitivity is proposed [29, 30], yielding significantly higher

precision at usually less cost [15, 20, 22, 48]. However, for

large Java programs, object-sensitivity is often unscalable

despite its good precision. To trade precision for efficiency,

type-sensitivity is thus introduced [39].

For type-dependent clients, MAHJONG represents a better

alternative than the allocation-site abstraction for the three

types of context-sensitivity. This benefit is expected to gen-

eralize to other variations of context-sensitivity [20, 48].

There are other ways to improve the efficiency of points-

to analysis. In [40], empirical heuristics are used to make

efficiency and precision trade-offs. As a result, some parts

of the program are analyzed context-sensitively and some

other parts are analyzed context-insensitively.

Heap Abstraction There are mainly two types of models

in static analysis: store-based, e.g., the allocation-site ab-

straction and storeless, e.g., access paths [19]. The former

is usually adopted in points-to analysis and the latter in alias

analysis [38]. We focus on store-based models for Java here.

Due to its good precision, the allocation-site abstraction

is adopted by (whole-program) points-to analysis techniques

in the literature [20, 21, 30, 39, 40, 42, 48] and tools, such as

CHORD [10], DOOP [14], SOOT [49] and WALA [50].

The allocation-type abstraction (with one abstract object

per type) was used earlier to resolve virtual calls [35, 47].

It is reasonably precise, compared with 0-CFA [37] and

CHA [13], which are fast but imprecise. Currently, points-to

analysis no longer relies on the allocation-type abstraction

to model the heap, as it is imprecise [19, 38, 51].

Liang and Naik [27] introduce a sophisticated allocation-

type-based abstraction in a pre-pruning analysis to scale

a subsequent refinement analysis to answer some queries

effectively. An allocation site h is represented by its dynamic

type and the type containing h. Unlike MAHJONG, however,

such an abstraction is still not precise for points-to analysis.

8. Conclusion and Future Work

We have introduced MAHJONG, a novel technique for ab-

stracting the heap to scale significantly points-to analyses for

object-oriented programs while maximally preserving their

precision for an important class of type-dependent clients,

including call graph construction. MAHJONG is expected to

provide significant benefits to many program analyses, such

as bug detection, security analysis, program verification and

program understanding, where call graphs are required.

This work opens up a number of research directions on

providing suitable heap abstractions for points-to analysis

for large codebases and addressing their interplay. First,

our notion of type-consistency may be overly restrictive for

some other clients and can be relaxed. Second, as there are

little benefits to analyze merged objects context-sensitively

for type-dependent clients, it may be worthwhile investigat-

ing how to enforce selective context-sensitivity systemati-

cally by exploiting this insight. Third, how do we adaptively

refine a MAHJONG-like heap abstraction to support demand

queries? Finally, it will be interesting to combine MAHJONG

and a storeless heap abstraction to support points-to analysis.
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