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ABSTRACT

Static analysis is a mature �eld with applications to bug detection,

security analysis, program understanding, optimization, and more.

To facilitate these applications, static analysis frameworks play an

essential role by providing a series of fundamental services such

as intermediate representation (IR) generation, control �ow graph

construction, points-to/alias information computation, and so on.

However, although static analysis has made great strides and sev-

eral well-known frameworks have emerged in this �eld over the

past decades, these frameworks are not that easy to learn and use

for developers who rely on them to create and implement analyses.

In that sense, it is far from trivial to build a developer-friendly static

analysis framework, because compared to the knowledge required

for static analysis itself, we have signi�cantly less knowledge de-

signing and implementing static analysis frameworks.

In this work, we take a step forward by discussing the design

trade-o�s for the crucial components of a static analysis framework

for Java, and select the designs by following the HGDC (Harnessing

the Good Designs of Classics) principle: for each crucial component

of a static analysis framework, we compare the design choices made

for it (possibly) by di�erent classic frameworks such as Soot, Wala,

Doop, SpotBugs and Checker, and choose arguably a more appropriate

one; but if none is good enough, we then propose a better design. These

selected or newly proposed designs �nally constitute Tai-e, a new

static analysis framework for Java, which has been implemented

from scratch. Tai-e is novel in the designs of several aspects like

IR, pointer analysis and development of new analyses, etc., leading

to a developer-friendly (easy-to-learn and easy-to-use) analysis

framework. To the best of our knowledge, this is the �rst work

that systematically explores the designs and implementations of

various static analysis frameworks for Java. We expect it to provide

useful materials and viewpoints for building better static analysis

infrastructures, and we hope that it could draw more attentions of

the community to this challenging but tangible topic.

CCS CONCEPTS

• Software and its engineering→ Automated static analysis.
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1 INTRODUCTION

Static analysis is a well-studied technique that has been successfully

applied to many applications like bug detection [8, 12, 50], secu-

rity analysis [4, 32, 43, 54], code optimization [60, 64, 74], program

understanding [42, 66] and veri�cation [19, 31, 53], and its e�ect

has translated into real bene�t for a substantial number of research

work and industry products [14, 15, 56]. To facilitate these applica-

tions (by implementing speci�c analysis algorithms), static analysis

frameworks play an essential role by providing a series of funda-

mental services such as intermediate representation (IR) generation,

control �ow graph construction, points-to/alias information com-

putation, and more. However, despite impressive progress of static

analysis, and this �eld has seen several popular frameworks in the

last decades [10, 24, 52, 63, 71, 72], they are not that easy to learn

and use for developers who rely on them to create and implement

analyses. In other words, it is far from trivial to build a developer-

friendly static analysis framework, as compared to the knowledge

required for static analysis itself, we have signi�cantly less knowl-

edge designing and implementing static analysis frameworks. This

is a challenging problem, as framework design is mostly a trade-o�

among di�erent goals such as simplicity, usability and e�ciency

(one is often implemented at the expense of another), and it will

take a lot of labor and intelligence to implement; additionally, it is

also hard to evaluate its e�ectiveness due to its subjective nature. As

a result, a decade ago, the authors of Soot [71] wrote the following

words in their retrospective paper [33]:

“We have noticed that it is di�cult to publish framework papers...

We encourage conferences to accept more framework papers.”

Until now, despite still very few, there is work that attempts

to o�er some lessons learned for improving (or adding) certain

facilities for their analysis frameworks after using them for a period

of time [33, 58], but none addresses the root of our problem — we

still lack a systematic view to examine the quality of a static analysis

framework from the perspective of developers who rely on the

framework to create new analysis. To tackle this problem, in this

paper, we take one step forward by discussing some of the key

design trade-o�s for the following crucial components that a static

analysis framework (for Java) is supposed to provide.
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• ProgramAbstraction. It needs to provide an abstractionmodel,

including IR, class hierarchy, etc., to represent all program

elements that are ready for various static analyses to acquire;

• Fundamental Analyses. It is supposed to support fundamental

facilities to allow analysis developers to work with analysis-

friendly structures such as control �ow and call graphs to

implement classic graph-based algorithms, and to make use

of abstracted memory information of input programs such

as points-to/alias relations to build sophisticated analyses;

• New Analysis Development. It ought to o�er a mechanism

for developing and integrating any new analysis, including

clients like bug detectors and security analyzers as well as

more basic ones like exception and re�ection analyses;

• Multiple Analyses Management. It should provide a standard-

ized approach to managing multiple analyses (e.g., con�gur-

ing their dependencies or cooperating their outputs) when

they are required to work together for certain analysis task.

In addition, for the above components, we argue for the most

appropriate design by following the HGDC (Harnessing the Good

Designs of Classics) principle: Given any component, we compare

the design choices made for it (possibly) by di�erent classic frame-

works such as Soot [71], Wala [72], Doop [10], SpotBugs [63], and

Checker [52], and select arguably a more appropriate one; but if none

is good enough, we then propose a better design. These selected or

newly proposed designs together constitute Tai-e, a new static

analysis framework for Java, which has been implemented from

scratch, and built with great care; these e�orts �nally contribute to

a developer-friendly, i.e., easy-to-learn and easy-to-use framework.

We consider Soot,Wala, Doop, SpotBugs andChecker as they are

all classic frameworks for Java with histories spanning more than

a decade. Soot and Wala, as two general analysis frameworks, have

drawn the attention of numerous academics, and as the centerpieces

of a general analysis framework, the systems of pointer analysis and

data-�ow analysis are crucial and should be speci�cally explored;

Doop is the state-of-the-art of the former, while SpotBugs (the

successor of FindBugs [23]) and Checker are the representatives of

the latter. Speci�cally, this work makes the following contributions.

1. We present the �rst work that systematically explores the de-

signs and implementations of various classic static analysis frame-

works for Java, and discuss their rationalities for di�erent crucial

analysis components, providing useful materials and viewpoints

for building better static analysis infrastructures.

2. We introduce Tai-e, a developer-friendly static analysis frame-

work for Java, which is built from scratch, following the HGDC prin-

ciple. In addition to the integration novelty stemming from HGDC,

Tai-e has its speci�c novel designs. For examples:

• Tai-e o�ers a usage-friendly IR for developing analysis: com-

pared to the IRs of Soot andWala, it enables to produce more

succinct code for implementing static analysis algorithms,

and makes it easier to understand its underlying intents.

• Tai-e provides an e�ective pointer analysis system that is

more extensible and e�cient than other frameworks, making

it easier to create various new pointer analysis algorithms.

• Tai-e introduces a novel analysis plugin system to easily de-

velop and integrate new analysis (that interacts with pointer

analysis) like taint analysis and exception analysis, etc.

The primary goal of Tai-e is to be developer-friendly, and the

scheme to determine whether Tai-e achieves this goal is to evaluate

feedback from analysis developers. Below, we list some examples.

An established professor wrote to us: “My students told me that

it is very smooth to write code on Tai-e and Tai-e is signi�cantly

better than Soot in usability. ”

A senior static-analysis engineer from a famous IT company

wrote to us: “To me, Tai-e’s design model is worth learning for

many analysis tools. I found it can help junior analysis developers

quickly understand analysis algorithms by debugging and reading

the framework code; senior developers can also quickly integrate

their analysis module based on Tai-e’s pluggable analysis system.

The overall analysis process of Tai-e is clear and controllable.”

A netizen wrote publicly in a technical blog: “In retrospect, Tai-e

is undoubtedly excellent in the ability of pointer analysis and

algorithm design, and the entire framework design of Tai-e and

its plugin-style programming, and the design thinking of other

aspects, go far beyond Soot...”

In addition, we conduct a survey from 32 graduate students

(whose �elds are SE and PL) to compare Tai-e, Soot (or Wala) for

evaluating which framework is more developer-friendly, and 16

survey reports are received. Brie�y, all 16 respondents agree that

Tai-e is easier to learn and use than Soot and Wala, despite the fact

that seven of them have previously used Soot or Wala. Moreover,

we ask them to implement the same re�ection analysis on di�erent

frameworks, and they spent on average 29 hours on Tai-e while

at least 49 hours on Soot/Wala (many of them claimed that func-

tionality, debugging, and other challenges prevented them from

completing the task on Soot/Wala, so the real time spent should be

longer). Some of their detailed feedback is given at the end of each

section, and more evaluation results are discussed in Section 6.

3. We release Tai-e as an open-source framework to o�er a plat-

form to develop new analyses with low cost of framework learning

and analysis implementation (https://github.com/pascal-lab/Tai-e).

Additionally, an educational version of Tai-e was developed, on

top of which eight assignments are carefully designed for sys-

tematically training developers to implement various static analy-

sis techniques to analyze real Java programs (https://tai-e.pascal-

lab.net/en/intro/overview.html). This educational version has now

attracted lecturers from 26 universities (for teaching purpose), lead-

ers of the program analysis R&D teams from 13 companies (for

training their software engineers), and students from 104 universi-

ties (for doing Tai-e assignments on our online judgment platform).

2 PROGRAM ABSTRACTION

A static analysis framework needs to o�er an abstraction model

of programs, including IR, type system, class hierarchy, etc., to

represent all program elements for static analysis to conveniently

obtain. Due to limited space, belowwe elaborate on some key design

choices made by Tai-e, Soot and Wala for IR (the most important

abstraction model) and explain why we arrive at making them.

Soot andWala have their speci�c IRs, and the IR of Tai-e is largely

inspired by these two frameworks with notable improvements for

helping analysis developers implement more concise analysis code

and better understand the underlying intents of IR.
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1 // Soot

2 void processBinary(AssignStmt assign) {

3 Value rightOp = assign.getRightOp();

4 // "Abstract" statement introduces conditional checks

5 if (rightOp instanceof BinopExpr) {

6 BinopExpr binopExpr = (BinopExpr) rightOp;

7 // "Top" returned type needs casting

8 Local lhs = (Local) assign.getLeftOp();

9 Value op1 = binopExpr.getOp1();

10 Value op2 = binopExpr.getOp2();

11 // obtain name of op1

12 if (op1 instanceof Local) {

13 Local var1 = (Local) op1;

14 String name1 = var1.getName();

15 }

16 // obtain type of op1

17 Type type1 = op1.getType();

18 // obtain constant value of op2

19 if (op2 instanceof Constant) {

20 Constant val2 = (Constant) op2;

21 }

22 }

23 }

24 // WALA

25 void processBinary(SSABinaryOpInstruction binary, IR ir) {

26 int lhs = binary.getDef();

27 // getUse() returns an int value as index to access the

28 // info of the corresponding operand: lines 32, 37-39

29 int op1 = binary.getUse(0);

30 int op2 = binary.getUse(1);

31 // obtain name of op1

32 String[] name1 = ir.getLocalNames(binary.iIndex(), op1);

33 // obtain type of op1

34 TypeInference ti = TypeInference.make(ir, true);

35 TypeAbstraction type1 = ti.getType(op1);

36 // obtain constant value of op2

37 SymbolTable symbolTable = ir.getSymbolTable();

38 if (symbolTable.isConstant(op2)) {

39 Object val2 = symbolTable.getConstantValue(op2);

40 }

41 }

42 // Tai-e

43 void processBinary(Binary binary) {

44 Var lhs = binary.getLValue();

45 BinaryExp binaryExp = binary.getRValue();

46 Var op1 = binaryExp.getOperand1();

47 Var op2 = binaryExp.getOperand2();

48 // obtain name of op1

49 String name1 = op1.getName();

50 // obtain type of op1

51 Type type1 = op1.getType();

52 // obtain constant value of op2

53 if (op2.isConst()) {

54 Literal val2 = op2.getConstValue();

55 }

56 }

Figure 1: A case depicts how a binary statement is handed in

Soot, Wala and Tai-e respectively based on their IRs.

In brief, Tai-e enhances developer-friendliness from multiple

perspectives, including: (1) the design of IR, e.g., Tai-e distinguishes

between di�erent types of assign statements in contrast to Soot;

(2) associated API designs, e.g., Tai-e utilizes concrete return types

for expression retrieval and avoids the use of integers as indexes to

represent variables, which di�ers from Soot and Wala, respectively;

and (3) the organization and accessibility of program elements such

as values, types, and names, e.g., unlike Wala, Tai-e centralizes all

variable-related information into a single interface, rather than

distributing them into di�erent interfaces. Thanks to (1) and (2),

Tai-e enables developers to write more concise code, e.g., avoid-

ing unnecessary conditional checks and downcasts when using

various expressions and statements; additionally, (3) enables de-

velopers to easily learn Tai-e’s functionalities, and allows them to

create analyses more �uently. Below we take binary statement as a

representative example to explain the above design intentions.

Figure 1 depicts this example and shows how a binary statement

(e.g., G = ~ + I), as a parameter of method processBinary, is

handled in Soot, Wala and Tai-e respectively.

Soot represents all statements that have “=” operator inside as

AssignStmt and does not explicitly distinguish the concrete types

of assign statements, e.g., new, load, store, unary, binary statements,

etc. (but Wala and Tai-e do). Although utilizing fewer statement

types makes IR simpler, it may introduce many unnecessary condi-

tional type checks. For example, as shown in Figure 1, unlike Wala

and Tai-e, the declared type of the assign parameter (line 2) has to

be AssignStmt as AssignStmt is the lowest-level interface in the

class hierarchy of Soot to represent a binary statement (Wala uses

SSABinaryOpInstruction (line 25) and Tai-e uses Binary (line 43)

to represent a binary statement respectively); as a result, conditional

check to the right operand of assign is required (line 5) in Soot to

ensure the casting (line 6) to be safe.

In addition, as Soot always returns Value (the highest-level in-

terface in the class hierarchy) to represent data, e.g., local, constant,

expression, reference, etc., further casting is needed to determine

the right type of data. Line 8 shows one such case: the type of

the left operand of a binary statement is a local variable (this is a

pre-knowledge of Soot, but if users do not know it, a conditional

type check is also required here), but as Soot declares Value as

the returned type of getLeftOp(), casting to Local is needed due

to type constraint. As another example (not shown in code), Soot

provides <Value getCondition()> of class IfStmt to obtain the

conditional expression of an if statement; that means Soot still

returns Value even if it knows that the condition of an if state-

ment must be a type of ConditionExpr (can be validated via its

code), which is a subtype of Value, resulting in another case of

unnecessary casting. The above cases imply that distinction in IR

design may appear subtle, but its e�ect is often profound.

Wala does not have this problem and it adopts a di�erent strat-

egy to represent local variables. For instance, getUse() in line 30

returns an int value (op2) as the index to access the information of

the corresponding operand: to obtain the constant value stored in

this operand, op2 is used as index to lookup a symbol table (line 39)

which can be retrieved from ir (line 37); in other words, unlike Soot

(line 10) and Tai-e (line 47) that directly hold the operand values,

Wala adopts the above int-index strategy to obtain the related val-

ues, which is less straightforward to understand and may become

more di�cult to debug when variable information is needed.

Besides, possibly due to the above design, di�erent from Soot

(lines 11–17) and Tai-e (lines 48–51) that uniformly obtain infor-

mation from operands directly, Wala has to use other interfaces

to obtain the name and type of an operand, via ir (line 32) and

TypeInference (lines 34–35) respectively, increasing learning costs.

Tai-e avoids the above issues of Soot and Wala as re�ected in

lines 43–56. Now we invite readers to view the code of Figure 1 in

its entirety to experience how the same binary statement is han-

dled di�erently based on di�erent IRs. Given the binary statement

example in Figure 1, and the fact that a program is often made

of many di�erent types of statements and expressions, we could

anticipate considerable bene�ts a�orded by Tai-e’s IR for writing

more concise and understandable analysis code.
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Moreover, Tai-e introduces a few new IR designs to make it more

accessible for certain analyses. For example, to facilitate pointer

analysis, Tai-e associates each variable vwith its related statements

in its IR, and once v’s value is changed during analysis, developers

can directly and conveniently retrieve all the related statements of

v via IR to take further actions. Below, we list some feedback about

the IRs of these frameworks from di�erent developers.

“Tai-e’s IR is concise and easy to understand while Soot’s is over-

complicated.” “The IR APIs provided by Tai-e is self-explainable.”

“In comparison to Tai-e, the modeling to statements and variables

in Soot is not straightforward, producing some ungraceful logic

implementations when traversing the graph. ”

“Compared to Soot, the designs for the data structures of Tai-e’s IR

are more intuitive. E.g., I can directly retrieve the related informa-

tion of a statement via Tai-e’s interface for statements (no need to

collect information by taking the e�ort to �nd other interfaces).”

“You can hardly directly get the information via many of Wala’s

APIs (for IR, class hierarchy, etc.). It often requires multiple APIs

to be used jointly, resulting in lengthy code; but you can basically

get the target information directly via various of Tai-e’s APIs.”

“Tai-e o�ers a simpler representation of IR statements. Compared

with other analysis tools, we can implement analysis algorithms

based on Tai-e’s IR with more concise code, which also increases the

readability and facilitates code maintenance for team members.”

3 FUNDAMENTAL ANALYSES

Static analysis approximates how abstracted data �ows along the

control structure of a program according to the language semantics

and runtime environment. Accordingly, a static analysis framework

should o�er fundamental facilities to produce such control struc-

tures like control �ow and call graphs (which are analysis-friendly

structures that enable classic graph-based analysis algorithms) to

develop various data �ow analyses; besides, we need a pointer

analysis to compute abstractions of the possible values/relations of

pointer variables (points-to/alias information) in a program that are

required by many other fundamental analyses and clients [60, 65].

In this section, we introduce what design choices are made by

di�erent frameworks for these two fundamental facilities: pointer

analysis and control/data �ow analysis, and explain how Tai-e is

inspired by and di�ers from classic frameworks in designing them.

3.1 Pointer Analysis (Alias Analysis)

“Pointer analysis is one of the most fundamental static program

analyses, on which virtually all others are built.” [36]. Soot o�ers a

pioneer (context-insensitive) pointer analysis system for Java called

Spark that is highly optimized and runs very fast [35], and Wala

also implements a pointer analysis system with context-sensitivity

enhancement [65]. Doop [10] is another classic pointer analysis

framework that is full of clever and useful designs. Unlike Soot,

Wala and Tai-e which are imperative (implemented in Java), Doop

is fully declarative and implemented in Datalog, and it is considered

as the mainstream platform to implement and compare di�erent

newly proposed pointer analysis algorithms for Java in the last

decade [13, 25–28, 30, 37–39, 61, 62, 68–70]. All of these frameworks

implement the same Andersen-style algorithm [2] as the core of

0
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+

Figure 2: A case for regular (212 = 4096) bitsets and (one-level)

virtual memory-like sparse bit sets (vm-bitset) used in Tai-e.

pointer analysis; however, di�erent choices are made by them for

the following key points that need to be considered when designing

a pointer analysis system for Java:

• a representation of points-to information

• a context manager for handling context sensitivity1

• a heap manager for modeling heap objects

• a solver for propagating points-to information

Due to limited space, the �rst two design points, where Tai-e di�ers

more from other frameworks in them, are discussed below.

Representation of Points-to Information. Pointer analysis requires

a uniform data structure to e�ectively represent the points-to set

associated with each variable in a program. Both Spark and Wala

adopt a hybrid points-to set: when the size of set is less than certain

value, they use array to store the pointed-to objects; otherwise, a

regular bit set is considered to represent the points-to set. Tai-e

follows this hybrid approach, but the bit set is designed di�erently.

Assume a regular bit set uses 212 = 4096 bits to represent 4096

pointed-to objects stored in the points-to set of any variable that

points to them. Figure 2 depicts a case that variable v has a points-

to set {$20,$100,$3990,$3993}, and the four objects inside are pre-

sented by 1 (in red color) and the other bits remain 0 in the 4096-bit

set (see left-hand side of the �gure). It is not hard to see that many

bits are wasted when there are only a few pointed-to objects. To ad-

dress this issue, Tai-e adopts a scheme called “virtual memory”-like

sparse bit set [11] to represent points-to sets, as shown in Figure 2.

In this case (see right-hand side of the �gure), 16 integers (each

occupies 32 bits) are used as pointers for referring to maximally

sixteen 256-bit sets (also 4096 bits in total). Since there are only

four objects to represent in this case, two 256-bit sets are enough

to store them, totaling 1024 = 2 × 256 + 16 × 32 (space for storing

pointers) bits instead of the 4096 bits required by regular bit set.

In practice, to save more space, instead of the one-level page table

used in the above example, Tai-e adopts two-level page table (like

the concept in virtual memory) for referring to objects, and the table

size is dynamically determined according to the number of pointed-

to objects. Compared to regular bit set (used in Soot and Wala), the

“virtual memory”-like sparse bit set in Tai-e helps save on average

23% (up to 40%) memory for context-sensitive pointer analysis.

When we constrain the memory size to a limited one (like 8G for a

laptop), this approach helps Tai-e scale for more benchmarks. Like

work for C language [6], more attempts for designing new bit sets

are encouraged for Java. Note that as Doop is declarative, its points-

to set representation is not accessible to analysis developers, and

di�erent Datalog engines may use di�erent representations [3, 10].

1Unlike pointer analysis for C/C++, context sensitivity is much more practically useful
than �ow sensitivity in improving precision for Java [60]
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Context Manager. Context sensitivity is the most widely used

approach to improving precision of Java pointer analysis [60, 65],

and we need a strategy to manage various context-sensitivity vari-

ants (call-site- [59], object- [47, 48] and type-sensitivity [61]) with

di�erent context lengths, for both method calls and heap objects.

Soot does not have an e�ective context-sensitive pointer analy-

sis system: Spark is context-insensitive; Paddle is a BDD-based

context-sensitive pointer analysis [34] of Soot and it has been

shown to be noticeably less e�cient than Doop [10] and hasn’t

been maintained for years. Doop o�ers a set of elegant rules to deal

with context sensitivity. However, due to the limitation of Datalog,

for each context length for the combination of method calls and

heap objects, developers have to write a separate implementation

for context-sensitive analysis, resulting in redundant code.

In contrast, Tai-e is imperative and it can easily treat context

length as an input parameter to the same implementation of context-

sensitive analysis. Wala only provides context management for

method calls, and its heap contexts directly inherit from the ones

selected for the method that includes the allocation site of the

heap object. Compared to Wala, Tai-e o�ers more �exible context

management: developers can specify the contexts for both method

calls and heap objects, e.g., 3-call-site (or 2-object) sensitivity for

method calls and 1-call-site (or 1-object) sensitivity for heap objects.

Tai-e also provides facilities to develop selective context sensi-

tivity (now a hot research topic of Java pointer analysis) that scales

for large and complex Java programs with good precision. Now

many state-of-the-art selective pointer analyses like Zipper [37],

Zipper4 [39], Scaler [38] and Mahjong [70] have been imple-

mented in Tai-e, serving as a uniform pointer analysis framework

to compare and develop new context-sensitivity approaches.

Below, we list some feedback (from di�erent developers) for

Tai-e’s pointer analysis system compared to Soot’s and Wala’s,

which are all imperative that most developers are familiar with

(their e�ciency and completeness are evaluated in Section 6).

“Unlike Tai-e, the code of Wala’s pointer analysis is highly coupled

with other analyses, which makes the code hard to read.”

“In Tai-e’s pointer analysis framework, the abstractions to the

key concepts of pointer analysis (e.g., pointers, objects, contexts,

allocation sites, method calls, etc.,) is easy to understand and utilize,

while the same concepts in Soot’s is hard to comprehend.” “It is

easier to design my pointer analysis in Tai-e than in Soot”

“It is really easy to extend and implement new pointer analysis

based on Tai-e’s pointer analysis system, and by contrast, Soot’s

extension is not good.”

“Regarding pointer analysis, the design of Tai-e’s points-to sets is

very clear, but Soot’s is strange. It is hard for me to understand

when reading its code even though it can be eventually understood.”

“Compared to other related tools, Tai-e integrates various state-

of-the-art top-down pointer analysis algorithms, on which high-

precision call graphs can be generated. This is crucial for enterprises

to do accurate code change impact analysis and testing, etc.”

3.2 Control/Data Flow Analysis

The algorithms for building control/data �ow analyses (e.g., control

�ow graph creation and various data �ow analyses like live variables

analysis) are standard and well understood in the �eld of compilers.

However, as the providers that support fundamental facilities to

build these analyses, static analysis frameworks may adopt di�erent

strategies in design details. We next introduce how Tai-e, Soot,

Wala, SpotBugs and Checker make choices for certain key design

points to ease the development of control/data �ow analyses.

Control FlowAnalysis. Building control �ow graph (CFG) is the

major task of control �ow analysis, and despite its basic algorithm

is standard, its e�ectiveness for facilitating users to build analysis

varies. We use two examples to explain.

Edge categories. Di�erent from Tai-e and SpotBugs, Soot, Wala

and Checker do not categorize edges of CFG, such as IF_TRUE,

IF_FALSE, and CAUGHT_EXCEPTION, etc. These well-categorized

edge information will ease to develop certain analyses like path-

sensitive and branch-correlated analysis, or perform exception-

speci�c handling. Compared to SpotBugs, Tai-e provides addition-

ally useful edge information, e.g., it labels the switch edges with

case values, and the exception edges with concrete exception

types. Note that developers can also parse out the edge information

in Soot and Wala by resolving the related nodes and IR in their

analyses, but doing so would be inconvenient and not easy to use.

While Checker does not categorize edges, it does categorize its

CFG nodes (basic blocks) into types such as ConditionalBlock

and ExceptionBlock, allowing developers to retrieve equivalent

edge information through the APIs of these speci�c blocks.

Exception handling. Regarding CFG for Java, an essential factor

that a�ects its e�ectiveness is how to statically resolve Java excep-

tion, and it is seen as the most critical source of incompleteness

in program analysis that developers indicated should not be over-

looked [14]. There are explicit and implicit exceptions: the former

is thrown by throw statement and is caught by the corresponding

catch statement if their types are matched, and the latter is thrown

implicitly by JVM. A complete CFG should consider both of them,

but in many cases, there is possibly a huge number of implicit ex-

ceptional control �ows in a program and they do not interact much

with the normal �ows (explicit exceptional control �ows do as log-

ics are often implemented in their catch body), and thus consider

them in CFG may reduce analysis precision (and usability). Unlike

Wala, SpotBugs and Checker, Tai-e and Soot distinguish explicit

and implicit exceptional control �ows and allow users to decide

which ones should be added to a CFG. Moreover, Tai-e implements

state-of-the-art exception analysis [9, 29] that resolves exception

signi�cantly more precise (sometimes also more complete) than

others, and o�ers the analysis as an option for constructing CFG.

Data Flow Analysis. To implement an analysis, developers typ-

ically follow the interfaces provided by a data �ow analysis system

to specify (1) data facts abstraction and initialization, (2) the transfer

function for approximating di�erent statements, and (3) the meet

or join operation for merging data facts at control �ow con�uences,

while making their analyses monotonic and safe-approximated.

Below, we take two examples to illustrate how di�erent designs

may lead to di�erent perceptions of use for developers.

Data facts initialization. Unlike Tai-e, SpotBugs, Checker and

Soot, Wala does not allow to initialize data facts in the analysis;

instead, it puts the related API in the solver, and thus every time

we write a new analysis that needs di�erent initialization, we have
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to additionally implement a new solver to override the API that

is responsible for initializing data facts. We argue that an elegant

design is to have just one solver to drive multiple data �ow analyses,

so that developers only need to focus on the implementations of

their analyses (no need to know the details of solver).

Edge transfer functions. Unlike Tai-e, SpotBugs and Wala, Soot

and Checker do not explicitly support edge transfer functions. Edge

transfer functions di�er from node transfer functions in that they

allow distinct data facts to be sent to various successors of a partic-

ular node along the edges between these nodes, utilizing branch

information (e.g., fact D is propagated when expression E’s value

is true) to create more e�ective analysis. When the body of edge

transfer function is left empty, it is regarded as an identity function

to directly propagate the OUT fact of its source node to the IN fact

of its target node (i.e., at this point, the analysis will change back

to the normal one where only node transfer function is in charge).

However, in Soot, to leverage branch information, developers need

to extend a special analysis called BranchedFlowAnalysis and im-

plement the logics for both edges and nodes in its node transfer

function, which is inconvenient and a bit cumbersome in design.

While Checker does not directly support edge transfer functions,

it distinguishes the results of node transfers into di�erent kinds,

such as those for the then and else branches. The solver will prop-

agate the then (else) result to the corresponding successor along

the then (else) branch, enabling developers to achieve the same

functionality as edge transfer functions. This method may require

handling edge-related facts in node transfer functions, coupling the

analysis logic of node and edge transfer functions.

Checker stands apart from the other frameworks we discuss here

in that it enhances the type system of Java by enabling developers

to write quali�ers (essentially Java annotations) for types, and

perform analysis through type quali�er inference [52]. This scheme

has proved e�ective in practice [1, 5], and we may investigate how

to use annotations to assist in static analysis in Tai-e going forward.

Control/data �ow analysis is very mature and as discussed above,

what we have improved in Tai-e is mainly to make it more con-

venient to develop sophisticated control/data-�ow analyses, or to

make the CFG more complete. So far, we received its feedback from

only two developers, and the reason why they felt easier to imple-

ment control/data �ow analysis on Tai-e is due to the better design

of Tai-e’s IR. We expect more feedback for this system in the future.

4 NEW ANALYSIS DEVELOPMENT

A static analysis framework should o�er mechanisms to incorporate

new analyses, from intraprocedural to interprocedural ones, and

Tai-e supports such facilities to conveniently develop and integrate

new analysis, as indicated by this feedback from a developer:

“When developing a new analysis, ideally, developers should be

able to rapidly identify their needed interfaces, data structures

and graphs etc., provided by the framework. In Soot, there are

various types of CFGs, etc., and it is not easy to understand their

relations and the purpose or usage of certain pieces of code. How-

ever, I think that most novice developers can quickly �nd out the

interfaces/classes, etc., that they need in Tai-e.”

Due to space constraints, in the rest of this section, we only

introduce how Tai-e and other frameworks design for developing a

very important class of analyses that need to interact with pointer

analysis [60, 65], e.g., fundamentals like re�ection analysis [40, 41]

and exception analysis [9, 29] as well as clients like bug �nders [12,

50] and security analyzers [4, 20, 43].

Past Work. Doop naturally supports such interactive analysis

and is able to yield elegant implementation, bene�ting from Data-

log’s declarative ability. However, Doop is also limited by Datalog in

implementing analysis that requires non-set-based lattices [45, 67],

and it is hard to optimize speci�c analyses as Datalog solver adopts

analysis-independent data structures and execution strategy [22].

As a result, imperative frameworks that facilitate such interactive

analysis are in high demand. As representatives, Soot lacks this

backing, whereas Wala does.

Wala provides a scheme to add new analysis that interacts with

pointer analysis, but in a limited way. Brie�y, developers need to

implement an interface called ContextSelector to specify related

call sites (of certain APIs) which the new analysis aims to model

based on the points-to results; for example, to analyze re�ective

call v = c.newInstance(), developers encode ContextSelector

to identify this call site and retrieve the Class objects, say CO, that

are pointed to by c via pointer analysis. Then, developers need to

implement ContextInterpreter to generate di�erent �ctitious but

e�ect-equivalent IRs (e.g., v = new T(); v.<init>(): allocating

an object and calling its constructor in this case) according to the

resolved types of CO (say T). Then these generated IRs are fed back

to pointer analysis to continue the resolution for this re�ective call.

This scheme is straightforward to understand but we argue that it

has some limitations to facilitate interactions with pointer analysis.

• First, for certain analyses, it is insu�cient to interact with

pointer analysis by only giving developers a way to con-

centrate on and resolve related call sites; capabilities for

monitoring the points-to information of speci�ed variables

are required. For example, in exception analysis, if the points-

to set of variable e in throw e is changed, the points-to set

of the corresponding catch variable should also be updated.

• Second, in many situations, it is simpler to update call graph

edges or points-to sets directly, which can prevent the cre-

ation of excessive amounts of �ctitious IR code and the need

to invoke the solver to reanalyze the created code. Thus, a

framework should additionally o�er amechanism to perceive

changes for any variables of a program in order to accom-

modate more analyses; besides, it should provide a way to

directly adjust the points-to results and call graph edges for

an easier or more e�ective engagement with pointer analysis.

Helm et al. [22] present an approach to collaborating various

analyses on the �y, even with di�erent analysis lattices. However,

this approach is too complex to adopt for addressing our problem,

because many constraints must be put in place by developers, in-

cluding encoding the rules that govern how control engine should

interpret and communicate the results of one analysis to others.

To practically facilitate the development of new analysis that

needs to interact with pointer analysis, in Tai-e, we introduce a

simple yet e�ective method called analysis plugin system. Currently

a dozen analyses in Tai-e are built on top of this system, including

fundamentals like re�ection and exception analyses, clients like

taint analysis, utility tools like analysis timer and constraint checker
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addPointsTo(Pointer,PTS)

addCallEdge(Edge)

addPFGEdge(Pointer,Pointer)

onStart()

onFinish()

onNewPointsToSet(Var,PTS)

onNewCallEdge(Edge)

onNewMethod(JMethod)

Notify analysis plugin by calling
plugin analysis’s interfaces

Update solver by calling
solver’s interfaces

Solver Analysis Plugin

addStmts(Collection<Stmt>)

Figure 3: Overview of Tai-e’s analysis plugin system for de-

veloping new analyses that interacts with pointer analysis,

which can be seen as an instance of the observer pattern.

(for debugging), modern language feature handling like lambda

expression and method reference analyses, runtime environment

modeling like native code and thread modeling, and so on.

In summary, current frameworks either lack an imperatively in-

teractive mechanism (Soot and Doop), have overly complex mecha-

nisms ([22]), or have limited capabilities (Wala). In contrast, Tai-e’s

plugin system o�ers a comprehensive range of interactive features,

including the ability to add new points-to sets, call graph edges,

and generate IRs. Its simple interface design consists of only one

interface and a few APIs to implement, making it easy to learn

and use. These features allow developers to implement sophisti-

cated analyses without requiring knowledge of the implementation

details of pointer analysis. Below we explain its basic idea.

Basic Idea. We explain how this analysis plugin system works.

As shown in Figure 3, this system includes a pointer analysis solver

and a number of user-de�ned analyses that communicate with it.

Each of these analyses is referred to as an analysis plugin that

needs to implement interface Plugin of Tai-e. The interactions

between pointer analysis solver and analysis plugin are carried out

by calling each other’s APIs. The core APIs of Solver and Plugin

are highlighted in blue and red, respectively. The Solver APIs have

been implemented in Tai-e, and developers only need to implement

the related APIs of Plugin to develop new analysis. The additional

auxiliary APIs are optional and designed to make it easier to create

speci�c functionalities; for example, addStmts of Solver can be

called to simulate the e�ect of speci�c call sites, which is similar to

the generated-IR approach of Wala mentioned above.

Let us illustrate the basic working mechanism that drives those

core APIs. Assuming you are implementing the onNewPointsToSet

method of an analysis Plugin, this means whenever an interested

variable’s (parameter Var) points-to set (parameter PTS) is changed

(i.e., it points to more objects), you need to encode your logic to

re�ect the side e�ect made by this change; the �nal consequence

of such an e�ect, from the perspective of pointer analysis, is to

modify the points-to set of any related pointers or to add call

graph edges at related call sites. Accordingly, in the implemen-

tation of onNewPointsToSet, you should call the addPointsTo or

addCallEdge methods of the Solver to alert it of these changes.

Conversely, during each analysis iteration, the Solver will au-

tomatically invoke the onNewPointsToSet and onNewCallEdge

methods of every Plugin to notify them of any changes to the

variables’ points-to sets or call graph edges, respectively. As a re-

sult, to add a new analysis that interacts with pointer analysis,

1 class TaintAnalysis implements Plugin {

2 Set<Pair<Var, Var>> transferVars;

3 void onNewCallEdge(Edge edge) {

4 if edge.target is source:

5 o = heapModel.getMockObj("TaintObj", edge.cs)

6 solver.addPointsTo(edge.cs.lhsV, o)

7 if edge.target is transfer:

8 foreach (from, to) in getTransfer(edge.target, edge.cs):

9 transferTaint(solver.getPointsToSet(from), to)

10 record (from, to) in transferVars

11 }

12 void onNewPoinstToSet(Var v, PTS pts) {

13 foreach (v, to) in transferVars:

14 transferTaint(pts, to)

15 }

16 void transferTaint(PTS pts, Var to) {

17 foreach o in pts:

18 if o.desc is "TaintObj":

19 solver.addPointsTo(to, o)

20 }

21 void onFinish() {

22 foreach (sink, param_i) in sinks:

23 foreach callsite cs in solver.getCallersOf(sink):

24 foreach o in solver.getPointsToSet(cs.args[param_i]):

25 if o.desc is "TaintObj":

26 report(o, cs)

27 }

28 }

Figure 4: Plugin of taint analysis (pseudocode version).

developers just need to implement a few methods of Plugin in

accordance with the requirement, as previously described.

Case Study. To better understand how to build new analyses on

top of this plugin system, let us look at an example of taint analysis

(its pseudocode is depicted in Figure 4). We recommend following

the �gure together with our text explaining the scenario below.

The three lines of code below outlines a typical case for taint anal-

ysis: sensitive data from an object, say o1, returned by x.source(),

is combined with an object, say o3, pointed to by s3, returned by

s2.concat(s1). Taint analysis reports that line 3 contains a leak of

o1’s sensitive data as o3 is used as an argument by a sink method.

1 String s1 = x.source();

2 s3 = s2.concat(s1);

3 y.sink(s3);

As taint analysis is developed as an analysis plugin, it needs to

implement some of Plugin’s methods in Figure 3. In our case, as

shown in Figure 4, two core methods onNewCallEdge (line 3) and

onNewPointsToSet (line 12), and an auxiliary method onFinish

(line 21) are considered.

Let us �rst examine onNewCallEdge. Assuming we are handling

call site 1: String s1 = x.source() in the code snippet above,

and for this call site, the pointer analysis solver has resolved a

new call graph edge from edge source (which is a call site de-

noted as edge.cs), i.e., call site 1, to edge target, i.e., the dispatched

method source; then the solver noti�es the taint analysis plugin

and passes this new edge to parameter edge in line 3, by calling

plugin’s onNewCallEdge method (the solver code is omitted).

Then the plugin code checks what the edge.target is. If the

target is a sensitive source method, denoted as source (line 4) (the

source, transfer and sink methods are speci�ed in the con�gu-

ration �le of taint analysis), a mocked taint object is created (line 5)

and the plugin updates the solver that the left-hand side variable of

this call site (edge.cs.lhsV), namely s1 (of the above code), should

point to the taint object that was just created (line 6).
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If the target is a transfer method (line 7), e.g., the concatmethod

at call site 2: s3 = s2.concat(s1), by which taint objects could

be transferred from its parameters (e.g., s1) to other variables at the

call site (e.g., s3) [20], for each of such transfer relation, denoted

as (from,to) in line 8, the taint objects that are pointed to by

from should be added in the points-to set of to (line 9 and lines

16 – 19). As a result, s3 now points to the taint object transferred

from s1. Actually, this transfer relation is also recorded in a data

structure called transferVars (line 10), which is equivalent to add

a taint-relevant �ows-to edge summarized for transfer method.

Then the code of onNewPointsToSet (line 12) is easy to un-

derstand: whenever a new taint object �ows to parameter v, and

v is also the from variable recorded in transferVars mentioned

above, the corresponding �ows-to variable to, should also point to

this taint object (line 14) for correctness. onFinish (line 21) will be

called by solver after it reaches the �xed point. For each sinkmethod

and its sensitive parameter param_i (line 22), onFinish identi�es

all its call sites cs and checks if any taint objects �ow to param_i

(lines 23 – 25), and if they do, it reports this taint information.

We will discuss the usefulness of this analysis plugin system

(with developers’ feedback) in RQ2 of Section 6.

5 MULTIPLE ANALYSES MANAGEMENT

In many circumstances, an analysis depends on the outcomes of

others, and it is helpful if the framework can provide amechanism to

coordinate multiple analyses. Below, we brie�y discuss two crucial

issues: how to con�gure an analysis and its dependencies, and how

to save the outcomes of one analysis and access them in another?

Con�gure Analysis and its Dependencies. Wala has no ex-

plicit management for multiple analyses. In Soot, to add a new

analysis, developers need to hard-code to add his implemented

Transformer into Soot, while Tai-e supports registering all new

analyses (and their dependencies) in the framework through one

con�guration �le and then drive them via re�ection automatically,

enabling code decoupling. In addition, before running an analysis

in Soot, users must explicitly list any dependent analyses (including

those that depend on the dependent ones) in the command. This

approach is cumbersome and prone to mistakes for users who are

unfamiliar with the framework. In Tai-e, the dependency resolution

is automatic by analyzing con�guration �les, ensuring the correct-

ness of execution order for all dependent analyses (if each analysis

is con�gured correctly); besides, this approach frees up developers

to concentrate on the speci�cation of their own analysis, and saves

their e�ort of writing command options when running an analysis.

Compared to SpotBugs, Tai-e is more �exible in resolving analysis

dependencies, by supporting conditional logics to describe analysis

options and dependencies. In summary, in order to facilitate simple

usage, maintenance, and troubleshooting in terms of con�guring

and conducting analyses, Tai-e strives to guide users to modify

code or con�gurations as little as possible.

Store/Access Analysis Results. Storing and accessing analysis

results may seem like a minor concern that doesn’t need to be

discussed, but a good design, despite the fact that it may not look

technical, can nevertheless produce a favorable user experience.

Unlike Tai-e and SpotBugs, Wala and Soot do not have a uniform

mechanism to manage analysis results (Soot only stores the results

of some analyses like pointer analysis in the singleton instance of

Scene). In SpotBugs, users need to remember di�erent methods and

arguments to obtain related results for various kinds of analyses.

In Tai-e, users only need to remember one method getResult(id)

(id is the analysis name in con�guration) for all types of analyses,

including method-, class- and program-level analyses. The straight-

forward user interface for accessing analysis results bene�ts from

the fact that Tai-e automatically stores analysis results in di�erent

locations according to various types of analyses. As a result, users

no longer have to bother trying to memorize complicated methods

and specify additional arguments to retrieve results.

Below, we list two feedback from di�erent developers about the

capability of multi-analysis management in analysis frameworks.

“Compared to Tai-e, Soot lacks the management of di�erent analy-

ses. So new developers are unclear about what analyses have been

provided by Soot, and developers in Soot’s community can hardly

share their implemented analyses with each other; besides, there

are dependencies between analyses that, if not clari�ed, can cause

many issues to development and testing.”

“Tai-e provides many built-in analyses and it is easy to combine

di�erent analyses in Tai-e, but with Wala, you need to manually

engage with di�erent analyses to combine them.”

6 EVALUATION

• RQ1: As the primary goal, is Tai-e really developer-friendly

(i.e., easy to learn and use) compared to the other general

Java static analysis frameworks, Soot and Wala?

• RQ2: As Tai-e’s key component, is the analysis plugin sys-

tem really helpful from the view of analysis developers?

• RQ3: What are the main shortcomings of Tai-e, and what

are the threats to validity of the study?

• RQ4: Although e�ciency is not Tai-e’s primary objective, it

would be helpful to know how well it compares in terms of

analysis speed to other related state-of-the-art frameworks.

To address RQ1 to RQ3, we carried out a user study as outlined

in Section 1. Below, we �rst provide background information on

the study and then explore the four research questions respectively.

6.1 Background of Study

We o�ered a free six-hour static analysis tutorial to graduate stu-

dents in our department. As part of the tutorial, we assigned a task:

implementing a re�ection analysis using Tai-e and Soot/Wala. We

taught the analysis algorithms but did not provide instructions on

how to implement them on these frameworks. Participation in this

assignment was voluntary, and not mandatory for students.

We also conducted a survey among the participating students,

and obtained feedback from 16 out of 32 students (the survey ques-

tions are provided in the following sections). Prior to the survey, we

informed the students to provide honest feedback about their expe-

rience implementing the analysis on di�erent frameworks. We told

them that their feedback would be helpful, and we may consider

integrating their code into Tai-e if it meets our high standards. This

served as encouragement for them to complete the time-consuming

assignment and participate in the survey. The students were not

informed that we would be evaluating these frameworks in our

paper, and they were not compensated for �lling out the survey.
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Out of the 16 respondents who provided feedback, �ve were from

our group and 11 were from other groups, working on research

topics such as program analysis, AI for SE, and system software.

Prior to the study, three respondents were familiar with Soot/Wala

only, one was familiar with Tai-e only, and four were familiar with

both frameworks. They had experience in developing various types

of analyses on these frameworks, like security analyzers, bug detec-

tors, pointer analysis, and data-�ow analysis. The remaining eight

respondents were unfamiliar with either framework.

6.2 RQ1: Is Tai-e Developer-Friendly?

Developer-friendliness is very crucial since it reveals whether or

not developers would want to create their analyses utilizing a frame-

work and whether doing so would allow them to save e�ort on

both learning and using a framework. Is Tai-e really developer-

friendly? Actually, the comments throughout the paper made by

di�erent analysis developers provide some assistance in answering

the question. Below, we present more �ndings from the study.

“Q: When developing your analysis on Soot/Wala or Tai-e, which

one is more developer-friendly? Please give at least three reasons

for why one is better than the other. ”

For the survey question above, all 16 respondents replied that

Tai-e is more developer-friendly than Soot/Wala. The top four rea-

sons that contribute to Tai-e’s developer-friendliness feature is that

(1) Tai-e’s framework structure, code and its API designs are easier

to understand and use; (2) Tai-e’s IR is more intuitive and simpler

to use, enabling more concise implementations; (3) Tai-e’s analysis

plugin system is simple yet quite e�ective to use; (4) Tai-e has a

more powerful pointer analysis system. In Sections 2 and 3, we

provided examples of feedback for (2) and (4) respectively. Below,

we give examples for (1) and will cover (3) in RQ2.

“Tai-e’s design patterns, code style and the ability of extension is

much better than Soot.”

“The readability of Tai-e’s code is good while Soot’s is not. So Tai-e’s

code is signi�cantly easier to understand than Soot’s.”

“Compared to Wala, Tai-e is more akin to a dependable static

analysis framework for Java. It features a variety of beautiful

OOP designs that make it simple to extend and overload code.”

“I get the impression from Soot that "it is best to utilize only the

functions it provides, do not construct the functions you require,"

whereas Tai-e is more conducive to programmers developing new

static analysis. Thus compared to Tai-e, in my opinion, Soot is

more of an analysis tool than a framework, as it lacks the features

that a good framework oughts to have, including maintainability,

code readability, and extensibility.”

To quantitatively examine the developer-friendly feature of a

static analysis framework, the most straightforward approach is

to evaluate how much time it spends to develop a new analysis

on di�erent frameworks. Hence, we request the respondents to

implement a set of functionalities for an important fundamental

analysis, re�ection analysis [41, 43] on both Tai-e and Soot/Wala

(Soot or Wala are randomly assigned to the respondents who are

unfamiliar with either), and leave the following question to answer:

“Q: How long does it take to develop the analysis on Tai-e and

Soot/Wala, respectively? Speci�cally, what is the time taken for

(a) being familiar with the framework, (b) thinking and design-

ing your analysis on the basis of the framework, and (c) coding,

debugging and testing, respectively?”

For the total time, they spent on average 29 hours on Tai-e while

at least 49 hours on Soot/Wala ( 4 hours for (a), 10 hours for (b), and

15 hours for (c) on Tai-e, while 12 hours for (a), 15 hours for (b) and

22 hours for (c) on Soot/Wala). Students who have prior experience

with a particular framework tend to complete tasks more e�ciently.

For instance, those who were familiar with Tai-e beforehand took

18 hours on average to complete the task, while those who were

already acquainted with Soot/Wala took 24 hours to �nish. Note

that many of them claimed that functionality, debugging, and other

challenges prevented them from completing the task on Soot/Wala,

so the real time spent should be longer on Soot/Wala.

6.3 RQ2: Is Tai-e’s Plugin System Helpful?

As explained in Section 4, although Doop-like declarative frame-

work is nature to implement interactive analysis, the capability is

limited by its Datalog language and underlying engine when devel-

oping or optimizing a wide range of analyses. Thus it is necessary

to o�er an e�ective system to support interactive analysis (with

pointer analysis) imperatively. Now we examine whether Tai-e’s

analysis plugin system is practically helpful in the view of analysis

developers by asking the following question in the survey:

“Q: Compared to Soot/Wala, do you �nd the analysis plugin system

of Tai-e to be helpful or not? Why?”

All 16 respondents acknowledged that Tai-e’s analysis plugin

system is helpful. Nine of them in particular �nd it to be very helpful.

We only list a portion of their remarks due to space constraints.

“Tai-e’s plugin system is very helpful. This design shields me from

the complexity of the underlying implementation of the pointer

analysis, achieves separation of concerns, and allows me to focus on

my own analysis. Soot has no such system, and before building the

analysis, you have to understand the details of its pointer analysis,

which is a great burden.”

“Tai-e’s analysis plugin system is very helpful, and Wala has no

mechanism to inject customized objects in pointer analysis, and its

scheme by implementing ContextSelector and ContextInterpreter

to generate IR is limited for some analyses. So when implementing

certain rules, one needs to interact with Wala’s pointer analysis,

which demands to understand its implementation details.”

“Tai-e’s plugin system has three bene�ts. First, it is time consuming

to understand the principles of various analyses, but through this

plugin system, we can focus more on our own analyses, simplifying

the analysis development. Second, it is bene�cial for both code ex-

tension and bug location to wrap additional analysis functionality

in a plugin. Third, it greatly decreases the amount of code you

have to create, which saves a lot of time and e�ort and somewhat

raises the level of code quality. ”

“According to my experience on developing analysis for enterprise

applications, Tai-e’s plugin system allows me to very conveniently

add my logics to the process of pointer analysis, and meanwhile, it

enables my analysis as well as the downstream security analysis

to interact naturally. Additionally, during testing, developers can

easily compose their needed functionalities by using this system. ”
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6.4 RQ3: Flaws of Tai-e and Threats to Validity

We show the two �aws of Tai-e that were most frequently brought

up in respondents’ feedback: (1) Tai-e’s documentation is not enough,

and (2) the strength of Tai-e’s ecosystem is insu�cient. E.g.,

“The main �aw of Tai-e is that it contains little documentation

(including tutorials, JavaDoc, etc.). Although its advantages (e.g.,

self-explainable APIs) greatly compensate for this disadvantage, it

would be more preferable with more informative documentation.”

“Likely because Tai-e was recently created, its ecosystem is not as

good as Soot’s and has fewer projects available for reference.”

Actually, there is no third most common negative feedback, but a

few feedbacks about speci�c API design issues of Tai-e. For example:

“Why is Visitor in the pointer analysis solver of Tai-e a private

class? If the plugin system can override/extend visitXXX()meth-

ods, it would be very helpful.”

We acknowledge these �aws and as a new static analysis frame-

work, we are actively creating a variety of analysis applications on

Tai-e. Wewill enrich its documentation with more project examples,

and continue to improve its API designs based on user feedback.

Threats to Validity of the Study.

• The participating students’ feedback may be in�uenced by a

bias towards the teacher’s work, i.e., Tai-e.

We should acknowledge that there is a potential threat to the

fairness of the study due to the participants coming from the same

department as the teacher. To mitigate this issue, we requested

that students provide honest feedback based on their experience.

Furthermore, as this was a voluntary, non-credit-bearing tutorial

without compensation, we expect that any bias would have a mini-

mal impact on the results.

• This study may have been more persuasive, if more analysis

developers from various backgrounds had participated in,

and more of them were able to �nish the survey.

• If more participants could implement various analyses (not

just re�ection analysis) on those frameworks, the results for

the question about evaluating how much time is spent on

di�erent frameworks would be more convincing.

However, completing such a time-consuming study to compare

di�erent analysis frameworks requires a lot of work, and it is al-

ready not easy to get quali�ed feedback from 16 (out of 32) analysis

developers. Moreover, the task becomes harder when the partic-

ipants were asked to implement re�ection analysis (a relatively

sophisticated analysis) on unfamiliar frameworks. So if we ask par-

ticipants to implement more analysis, their willingness to �nish

the survey would be signi�cantly reduced.

• The time required to implement re�ection analysis on dif-

ferent frameworks shows a discernible trend, but its precise

numerical values should be interpreted with caution.

This is because the time taken to implement the analysis on each

framework is in�uenced by several factors that are challenging to

measure in the study, such as programming pro�ciency, familiar-

ity with re�ection analysis and the framework, and code quality,

which vary among di�erent students. Therefore, the time cost re-

sults merely indicate a trend that Tai-e can potentially facilitate or

accelerate the development of speci�c analyses.

6.5 RQ4: Is Tai-e E�cient?

Although e�ciency is not Tai-e’s primary goal, it would be helpful

to know how well it performs in analysis speed compared to other

relevant state-of-the-art frameworks. This is because, despite the

framework being developer-friendly, developers may still not want

to base their analysis on a framework whose provided underlying

analysis runs very slowly. As pointer analysis serves as the basis on

which virtually all other analyses are built [36], its analysis speed

is important for all its clients. In the rest of this section, we �rst

evaluate the performance of pointer analysis and then the data-�ow

analysis, the other fundamental component of Tai-e.We consider all

standard Java DaCapo benchmarks [7] plus several large real-world

applications that are often used in recent literature [27, 39, 44, 68].

Due to limited space, we only show the summarized results.

Table 1: Completeness and e�ciency of pointer analysis.

Tool

Recall Context Insensitivity 2-obj 2-call

#reach #edges Time (s) #reach #edges Time (s) Time (s)

Tai-e 95.9% 91.3% 32.8 19,517 145,903 503.0 978.7
Qilin 90.5% 83.5% 47.2 18,927 143,503 522.2 2145.4
Doop 78.1% 68.4% 113.6 14,934 109,486 334.8 2202.3
Soot 81.3% 73.2% 41.4 15,376 130,337 N/A N/A

Pointer Analysis. Table 1 shows the average results for each

program by running the pointer analysis of Tai-e, Qilin [21] (a

recently released imperative pointer analysis tool), Doop and Soot

(Spark), respectively (Wala is not shown as unlike others, it does

not accept the output of dynamic re�ection analysis as its input,

and it runs noticeably slower than others in context sensitivity;

we found that Doop is not taking full advantage of the re�ection

information, and thus its recall results are not good for these cases).

Analysis’s speed heavily depends on its completeness (e.g., code

coverage), as it typically takes longer time to analyze more code.

As a result, we conduct recall experiments to record the amounts of

real reachable methods and call graph edges that are dynamically

collected when running the benchmarks; accordingly, their recall

rates are shown in the columns of #reach and #edges under “Recall”,

indicating how many real methods or call graph edges that are dy-

namically reachable, are successfully over-approximated by pointer

analysis. So higher recall rate implies better analysis completeness.

In summary, Tai-e achieves better recall than all other frame-

works for all cases (all programs and clients) while is able to run

faster than others for virtually all cases in both context-insensitive

and context-sensitive settings (For context sensitivity, we consider

two widely used approaches: object- and call-site sensitivity with

context length of two, denoted as 2-obj and 2-call in the table, re-

spectively). That means although Tai-e analyzes more code, it still

runs faster than other pointer analysis frameworks. Such good per-

formance bene�ts from Tai-e’s well treatment to language features

like re�ection resolution, native code modeling, etc., and various

optimizations to its pointer analysis implementations.

Table 2: E�ciency of live variable analysis.

Tool #Classes #Methods Time (s) #Methods/s

Soot 674 6,073 0.14 33,109
Tai-e 674 6,074 0.42 11,952
Wala 369 3,017 0.89 3,684
SpotBugs 2,324 20,510 6.11 2,542
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Data Flow Analysis. Table 2 shows the average results by run-

ning live variable analysis, which is the only data �ow analysis that

is provided by all of the four frameworks. Note that Checker was

excluded from the comparison because the DaCapo benchmarks

only o�er bytecode, whereas Checker can only analyze source code.

SpotBugs analyzes more classes and methods as it resolves all the

code included in a Jar �le, while the other frameworks resolves a

class only when it is referenced by other classes. Hence, to fairly

measure the e�ciency, we add the last column #Methods/s to de-

note how many methods are analyzed per second for each program.

Tai-e is more e�cient than Wala and SpotBugs, but less e�cient

than Soot. After inspection, we found that Soot applies several so-

phisticated optimizations to its data �ow analysis, but Tai-e does

not (as a data �ow analysis typically already runs extremely fast).

7 RELATED WORK

Themost pertinent work has been compared and discussed through-

out the paper. Below we discuss additional related work.

Lam et al. [33] give a retrospective of Soot by summarizing

its main features, major changes (e.g., it consolidated singletons

to support multiple runs, and supported to analyze incomplete

programs), and future directions (e.g., to build faster startup and

enhance interprocedural analysis). In addition, they mention some

di�culties in developing Soot and suggest some desirable features

for future compiler frameworks.

Schubert et al. [58] describe the lessons from building a data �ow

analysis framework for C/C++ [57], some of which are speci�c to

framework’s features while others are more general. For example,

it would be bene�cial for a framework to o�er means like instru-

mentation to help debug analysis-related bugs. This seems useful

and we may consider developing similar approach in Tai-e.

Sadowski et al. [56] summarize the lessons from building static

analysis tools at Google. They advise integrating static analysis

into work�ow as early as possible, and do the analysis checks as

compiler errors if possible (otherwise, developers often ignore anal-

ysis results). Integrating Tai-e’s individual analyses into developers’

work�ows may need to modify the basic infrastructure of Tai-e,

but that is an interesting subject that merit further investigation.

The study from Facebook [15] highlights the value of interproce-

dural analysis for identifying deep bugs and security vulnerabilities.

Tai-e’s analysis plugin system is speci�cally designed to make it

easier to develop a variety of sophisticated interprocedural analyses

that interact with pointer analysis to address the issues in [15] such

as precise virtual-call resolution and static value-�ow tracking.

Some studies evaluate static analysis tools from the view of users’

needs [14, 16, 49]. For instance, a good static analysis tool should

produce high-quality warning messages that o�er information on

what might be wrong, why it should be �xed, and how it could be

�xed, have low false positives of analysis results, and support the

integration of user knowledge, and more.

Chord [50] is a static analysis framework for Java that is written

in Java and Datalog with bddbddb [73] (a BDD-based implemen-

tation of Datalog) serving as the Datalog solver. As explained in

Section 4, despite being elegant when implementing various anal-

yses, Datalog has limited expression capacity and optimization

potential. Chord is particularly known for its capability to detect

concurrent errors such as data races, and we will develop these

clients imperatively (rather than declaratively) in Tai-e.

OPAL [17] is a static analysis framework for Java written in Scala.

The collaborative analysis approach [22] is implemented in OPAL;

unfortunately, as explained in Section 4, the approach is too complex

to be e�ective for our problem: developing analysis that interacts

with pointer analysis. In addition, the same authors [55] conduct

interesting study to assess the soundness of call graphs produced

by call-graph algorithms (e.g., CHA) in various frameworks, em-

phasizing the importance of e�ectively handling language features.

We discuss TAJS [24], a classic static analysis framework for

JavaScript and Node.js [18, 46, 51], as certain designs of Tai-e are

inspired by it. One is the regression testing and the other is the

initial idea of Tai-e’s analysis plugin system, where the solver-

plugins structure resembles TAJS’s monitor approach, despite that

their goals, methodologies and APIs are fundamentally di�erent.

For examples, their monitor approach is primarily used to gather

analysis results and perform statistics such as recording the times

a statement is accessed, or timing the amount of time an analysis

takes to complete for each statement, and it lacks the �ne-grained

interactive interfaces of Tai-e’s analysis plugin system. In addition,

it requires that monitor interface implementations should not have

side e�ects on the analysis state prior to the monitor scan; on the

contrary, Tai-e’s interface implementation for analysis plugin is to

have side e�ect on the pointer analysis by invoking methods as

explained in Section 4.

8 CONCLUSIONS

Although static analysis has made great strides and several popular

analysis frameworks have emerged over the past decades, these

frameworks are not that easy to learn and use for developers who

rely on them to build analyses, as it is far from trivial to build a

developer-friendly static analysis framework. This paper takes a

step forward by systematically comparing and discussing the design

trade-o�s for the crucial components of a static analysis framework

for Java, following the HGDC principle.

Our e�orts are highly labor- and intelligence-intensive as for

each design point, we must study and comprehend the code of those

large and intricate frameworks full of complex analysis algorithms

and implementations (this may be one of the primary causes of the

paucity of papers on the design of static analysis frameworks). But

such e�orts are worthwhile as they aid in the creation of Tai-e, a

developer-friendly static analysis framework for Java, and we have

shown throughout the article that it works well in attaining its goal.

We expect this work to provide useful materials and perspectives for

building better static analysis infrastructures, and we will actively

and constantly contribute to Tai-e by developing and incorporating

more analyses and clients in the future.
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