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Abstract—Java offers the Java Native Interface (JNI), which
allows programs running in the Java Virtual Machine to in-
voke and be manipulated by native applications and libraries
written in other languages, typically C. While JNI mechanism
significantly enhances the Java platform’s capabilities, it also
presents challenges for static analysis of Java programs due
to the complex behaviors introduced by native code. Therefore,
effectively resolving the interactions between Java and native
code is crucial for static analysis. In this paper, we introduce
JNIFER, the first interactive cross-language pointer analysis for
resolving native code in Java programs. JNIFER integrates both
Java and C pointer analyses, equipped with advanced native call
and JNI function analyses, enabling the simultaneous analysis
of both Java and native code. During the analysis of cross-
language interactions, the two analyzers interact with each other,
constructing cross-language points-to relations and call graphs,
thereby approximating the runtime behavior at the interaction
sites. Our evaluation shows that JNIFER outperforms state-of-
the-art approaches in terms of soundness while maintaining high
precision and comparable efficiency, as evidenced by extensive
experiments on OpenJDK and real-world Java applications.

Index Terms—Java Native Interface, Native Code, Pointer
Analysis, Cross-Language Analysis

I. INTRODUCTION

In Java development, native method calls play a crucial
role in leveraging existing native libraries, facilitating direct
interaction with the underlying operating system, optimizing
application performance, etc. Unlike ordinary Java methods,
which are declared and implemented in Java, native methods
are declared in Java but implemented in other languages
(primarily C code, referred to as native code). The execution
of native methods involves not only intra-language commu-
nication within Java and C but also complex cross-language
interactions. These interactions can be categorized into two
types: first, invoking C functions from Java via native method
calls (denoted Java → C); second, using Java Native Interface
(JNI) functions in C to call Java methods, create Java objects,
access Java fields, and more (denoted C → Java).

While native code is highly useful in development, it
poses significant challenges for static analysis [1]. The key
to resolving native code lies in inferring behaviors at cross-
language interaction sites, which involves identifying the target
native function of a native method call for J → C interactions
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and analyzing the behaviors of various JNI function calls
for C → J interactions. These tasks are complex due to the
intricate nature of cross-language interactions and language
differences between Java and C code [2]. Despite these chal-
lenges, resolving native code is valuable for static analysis,
providing more complete information about program behaviors
and benefiting client analyses such as security analysis [3]–[5]
and bug detection [6]–[9].

To comprehensively and precisely resolve native code in
Java, one of the most straightforward and effective approaches
is to utilize pointer analysis, a fundamental technique underly-
ing virtually all other analyses [10]. Despite the development
of numerous pointer analysis methods over the past 40 years
for C and Java individually [16]–[22], no interactive pointer
analysis exists to analyze Java and C simultaneously. The
significant syntax and semantic differences between the lan-
guages, along with their distinct pointer analysis algorithms,
complicate this approach and make it highly challenging.
Consequently, existing state-of-the-art works, JN-Sum [11]
and Native-Scanner [12], circumvent cross-language pointer
analysis to resolve native code in Java. Specifically, JN-
Sum focuses on a limited subset of C language constructs,
transforming them into Java code, and then analyzing the
Java code. However, by focusing on only partial C behaviors,
this method fails to resolve many interactions between C and
Java, missing numerous native code behaviors. Additionally,
the language transformation process is complex, significantly
affecting the analysis’s robustness and making it difficult to
adopt in practice. Conversely, Native-Scanner extracts string
constants from C code and, when matched with signatures
in Java code, conservatively assumes those Java methods are
reachable to mimic the side effects of native code. This highly
conservative approach results in significant imprecision.

In this paper, we tackle the above challenge directly, by in-
troducing JNIFER, the first interactive cross-language pointer
analysis to effectively resolve Java native code.

a) Method: JNIFER integrates both Java and C pointer
analyses, allowing the results of one to be recognized and
incorporated into the other. This facilitates the resolution
of native calls (Java→C) and JNI function calls (C→Java)
simultaneously. To achieve this, we propose a cross-language
model that uniformly represents the results of both Java and
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C pointer analyses. Based on this model, we introduce two
analyzers to on-the-fly resolve the cross-language interactions
of Java→C and C→Java respectively, by utilizing pointer
analysis while adhering strictly to the JNI specification. To
maximally unleash the power of pointer analysis, JNIFER
instantiates its methodology by incorporating Tai-e [13] and
SVF [14], two state-of-the-art pointer analysis frameworks, as
its pointer analysis components for Java and C, respectively.

b) Results: We conducted extensive experiments to com-
pare JNIFER with state-of-the-art tools, JN-Sum and Native-
Scanner, to examine its effectiveness. These tools were used
to analyze OpenJDK, which extensively uses native code, as
well as all real-world Java applications used in recent research
[11], [12]. The results indicate that JNIFER significantly
outperforms existing state-of-the-art methods:

• Soundness: We measured soundness by comparing how
many dynamic cross-language interactions in our ex-
periments could be recalled by the analyzers. JNIFER
achieved an average recall of 91.6%, significantly higher
than JN-Sum (34.6%) and Native-Scanner (62.9%).

• Precision: We randomly selected various interaction sites
and examined the analysis results of the tools. JNIFER
maintained excellent precision at 99.1%, whereas Native-
Scanner’s precision was only 25.0%. Although JN-Sum
reached a precision of 100%, it failed to resolve a
significant number of cross-language interaction sites.

• Efficiency: JNIFER proved to be the fastest in our ex-
periments, achieving a speedup of 2.4x over JN-Sum and
1.2x over Native-Scanner.

We will release JNIFER as an open-source tool and submit
an artifact to AEC for reproducing all experimental results.

II. MOTIVATING EXAMPLE

In this section, we use an example (simplified from real-
world native code in OpenJDK) to motivate our methodology.
First, we introduce the basic concepts of native code and the
example (Section II-A). Next, we use the example to illustrate
the limitations of existing works (Section II-B). Finally, we
present our insight (Section II-C).

A. Introduction to Native Code and The Example

To use native code, a developer must declare a native
method using the native keyword. When this method is
invoked, the JVM resolves the target native function written
in C (through name matching or runtime registration, details
of which are omitted here) and enters the function. This type
of interaction, where a native method call in Java leads to a
native function, is termed a J → C interaction.

Within a native function, a developer can invoke JNI func-
tions provided by the JVM to call Java methods, access Java
fields, and interact with Java objects. This type of interaction,
where a JNI function call in C operates on Java elements, is
termed a C → J interaction.

Fig. 1 presents an example simplified from real-world native
code in OpenJDK, where starting characters J and C denote the
line numbers for Java and C code, respectively. The example

includes seven cross-language interactions, marked by circled
numbers, ordered by their occurrence at runtime. Specifically,
1⃝ 2⃝ 4⃝ are J → C interactions, while 3⃝ 5⃝ 6⃝ 7⃝ are C → J
interactions. Due to the diversity of C → J interactions, their
side effects are explained in comments above the JNI function
calls to aid understanding.

In this example, the Java code consists of two classes,
Image and ColorModel. Image declares three native
methods (J13-J15) and calls them in initImage. The right
half of Fig. 1 shows the corresponding native functions. Note
that according to [2], the first argument of a native function
must be JNIEnv, which is omitted here for simplicity.

To fully understand such a program, it is essential to resolve
all cross-language interactions to obtain complete program
behaviors, including control and data flows. For example, at
3⃝, the native function Java_Image_initNative calls
SetIntField to update the Java field image.rgb with
the value of rgb. This indicates a data flow from rgb
(in C) to image.rgb (in Java). However, if the C code
retrieves an untrusted value and sets it to a security-sensitive
field in Java via SetField, it could introduce a security
vulnerability. If the static analyzer fails to resolve the cross-
language interaction, such a vulnerability may be missed.

B. Limitations of Existing Works

Since the control and data flows of Java programs with
native code span both Java and C sides, a natural approach to
analyzing such programs is to perform cross-language analy-
sis. However, this is challenging due to the intricate nature of
cross-language interactions and the differences between Java
and C. Existing works attempt to circumvent this difficulty in
resolving native code, but they introduce their own limitations.

Native-Scanner [12] resolves native code in a highly conser-
vative manner, resulting in significant imprecision. It extracts
string constants from native code to construct partial Java
method signatures, assuming that any Java method matching
these partial signatures will be called from C.

For example, for line C22 of Fig. 1, Native-Scanner would
extract partial signature <init>()V, and consider all no-
argument methods with a return type of void to be potential
targets invoked by native code. Additionally, it does not
support field access analysis in native code, thus missing
the data flow from 3⃝ to image.rgb. Even if it were to
handle field accesses, its methodology would likely introduce
a substantial number of false positives.

JN-Sum [11] adopts a different approach to analyzing Java
programs with native code by transforming C code (related to
JNI function calls) into Java code and feeding it to the Java
analysis. While this approach avoids the challenges of inter-
active cross-language analysis, it introduces the complexity of
code transformation between C and Java, requiring compre-
hensive handling of both languages, significant workload, and
potentially leading to soundness and robustness issues.

As a compromise, JN-Sum handles only a subset of C
features and performs cursory code transformation, resulting in
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J1 class Image {
 J2 int rgb;
 J3 ColorModel colorModel;
 J4 // initialization of an Image object
 J5 static void initImage() {
 J6 Image.initIDs();
 J7 Image image = new Image();
 J8 image.initNative();
 J9 // ...
J10 image.colorModel = image.initColorModel();
J11 }
J12 // native method declaration
J13 static native void initIDs();
J14 native void initNative();
J15 native ColorModel initColorModel();
J16 } 
J17 class ColorModel {
J18 ColorModel() { ... }
J19 void setRGB(int rgb) { ... }
J20 }

C1 jfieldID fid = NULL;
 C2 JNIEXPORT void JNICALL
 C3 Java_Image_initIDs(jclass IMAGE) {
 C4 fid = GetFieldID(IMAGE, "rgb", "I");
 C5 }
 C6 JNIEXPORT void JNICALL 
 C7 Java_Image_initNative(jobject image) {
 C8 jint rgb = ...;
 C9 // set Java field image.rgb
C10 SetIntField(image, fid, rgb);
C11 }
C12 JNIEXPORT jobject JNICALL 
C13 Java_Image_initColorModel(jobject image) {
C14 // get Java field image.rgb
C15 jint rgb = GetIntField(image, fid);
C16 jobject colorModel = createColorModel(rgb);
C17 return colorModel;
C18 }
C19 jobject createColorModel(jint rgb) {
C20 // create a Java ColorModel object
C21 jclass CM = FindClass("ColorModel");
C22 jmethodID mid = GetMethodID(clz, "<init>", "()V");
C23 jobject colorModel = NewObject(clz, mid);
C24 // call Java method ColorModel.setRGB(int)
C25 jmethodID setRGB = GetMethodID(CM, "setRGB", "(I)V");
C26 CallVoidMethod(colorModel, setRGB, rgb);
C27 return colorModel;
C28 }

Java

Language Boundary

Cross-Language Interaction

①

②

③④

⑤

⑥

⑦

C

Fig. 1. The motivating example showing interactions between Java and native code. The function names colored in red are JNI functions.

various errors in the transformed Java code. For example, JN-
Sum transforms the native function Java_Image_initIDs
into a static method and the function call at C4 to
GetFieldID(this, "rgb", "I"). However, the gen-
erated Java code is erroneous because there is no this
variable in a Java static method. This error further prevents
JN-Sum from resolving interactions 3⃝ and 5⃝, both of which
rely on the field ID obtained from C4.

In summary, current state-of-the-art methods have limita-
tions and fail to effectively resolve cross-language interactions,
including those in the example shown in Fig. 1.

C. Our Insight

Although performing interactive cross-language pointer
analysis is challenging, we believe it is an effective approach
for resolving native code and cross-language interactions.
This method can adequately collect program information from
each cross-language interaction site in both Java and C code,
accurately propagate this information to the other language,
and achieve effective results.

Therefore, we propose JNIFER, the first interactive cross-
language pointer analysis, to resolve native code. JNIFER inte-
grates Java pointer analysis and C pointer analysis, equipped
with an innovative cross-language model, enabling the two
analyses to interact and collectively resolve cross-language in-
teractions. JNIFER can avoid the imprecision issues of Native-
Scanner, as well as the complexity and subsequent soundness
and robustness issues of JN-Sum, making it more effective
at resolving native code compared to existing approaches.
For instance, when analyzing 3⃝ in Fig. 1, JNIFER collects
information about image, fid, and rgb via C pointer
analysis, resolves its target Java field, and propagates it to
Java pointer analysis, resulting in an accurate analysis of this
interaction site.

III. METHODOLOGY OF JNIFER

We present an overview of JNIFER and its key components.

A. Overview

Fig. 2 provides an overview of JNIFER, which takes a
program containing both Java and native (C) code as input,
and outputs the resolved cross-language interactions within
the program. The key innovation of JNIFER is its interac-
tive cross-language pointer analysis. JNIFER consists of a
Java pointer analysis and a C pointer analysis, which collect
program information from both Java and C code. Building
on these analyses, we introduce a new JNI analysis, divided
into Java and C parts. Both parts run simultaneously with the
pointer analyses and interact with each other by exchanging
requests and replies to resolve the behaviors at cross-language
interaction sites.

As shown in Fig. 2, JNI analysis is the core of JNIFER,
consisting of three components. Native call analysis resolves
native method calls from Java code (J → C interactions), while
JNI function analysis resolves JNI function calls from C code
(C → J interactions). Both analyses are divided into a Java part
and a C part, each communicating with their respective pointer
analysis. To enable interaction between these two parts, they
must be aware of relevant program information (e.g., objects
and pointers) from their counterpart. Therefore, we propose a
cross-language model to support this communication. Below,
we introduce these components in detail.

B. Cross-Language Model

To enable interactive cross-language pointer analysis, we
designed a novel model for exchanging program information
between the Java and C parts of JNIFER. The core idea
of our model is that the Java and C parts convert program
elements into numerical IDs or strings and then transmit them
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Native Call Analysis
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Request
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Fig. 2. Overview of JNIFER

to each other via inter-process communication (IPC). Each part
maintains mappings between the program elements and the
exchanged information. We carefully designed this model to
minimize the amount of program information that needs to be
exchanged, resulting in a simple yet effective cross-language
model. Overall, our model exchanges three types of program
elements: Java objects, Java classes/methods/fields, and call
sites in both Java and C, as explained below.

a) Java Objects: The Java part and the C part need to
exchange Java objects manipulated by native code. Instead
of directly exchanging Java objects, JNIFER exchanges the
Java pointers that point to the objects. This design reduces
the amount of information exchanged, as a single pointer can
point to multiple objects. To exchange a Java pointer, the Java
part assigns a unique ID to the pointer, and the C part maps
this ID to a mock object of type jobject, which represents
Java references in JNI [2].

The key insight behind this design is as follows: according
to the JNI specification, native code can only access Java
objects through JNI function calls (e.g., retrieving the type
information of a Java object using the GetObjectClass
function). In JNIFER, the analysis of these JNI function calls
is delegated from the C part to the Java part, where the side
effects of these calls are analyzed. Consequently, the C part
only needs to maintain numerical IDs for the Java pointers
referencing these objects. When analyzing JNI function calls,

the C part transmits these numerical IDs to the Java part, which
then resolves the corresponding Java objects and analyzed the
interactions based on JNIFER’s JNI function models.

b) Java Classes, Methods, and Fields: We use uniformly
formatted string constants to represent the signatures of Java
classes, methods, and fields. These signatures are exchanged
between the Java and C parts, allowing them to communicate
which Java elements they are operating on.

c) Java and C Call Sites: Similar to Java objects, we
assign unique IDs to the Java and C call sites for exchange.

C. Native Call Analysis for J → C Interaction

In JNIFER, we designed a comprehensive native call anal-
ysis to resolve native method calls in Java, i.e., J → C
interaction. This analysis is divided into a Java part and a C
part. Briefly, the analysis of a native call (written in Java) aims
to accomplish two tasks: first, to identify the corresponding
target native function (implemented in C); and second, to
analyze the native function (handled by the C part) and feed
the side effects back to the Java part. Below, we introduce the
working mechanisms of both parts.

a) Java Part: When processing a native method call,
since the native method is implemented in C, the Java part
cannot analyze it. Instead, the Java part wraps the information
at the native call site as a request, including the signature of
the native method and the arguments of the call sites, and
sends it to the C part, as shown in Fig. 2. For example,
when analyzing 4⃝ in Fig. 1, the Java part generates a request
containing the method signature <Image: ColorModel
initColorModel()> and the variable image, and sends it
to the C part for further processing. Note that such information
exchange between the Java part and the C part requires the
cross-language model introduced in Section III-B.

The reply from the C part carries information about the
return value of the native call, which the Java part uses to
complete points-to relations. For example, when analyzing 4⃝,
the Java part will use the reply from the C part to fill the
points-to set of image.colorModel.

b) C Part: The C part of native call analysis is triggered
by a request from the Java part. Upon receiving the request,
the C part first identifies the native function implementing
the native method. This identification is based on the naming
convention defined in the JNI specification [2] and the analysis
of the JNI function RegisterNatives, which developers
can use to dynamically register native functions.

After resolving the native function, say f , the C part notifies
the C pointer analysis core to mark f as a reachable function
and analyze it. If f calls important JNI functions, especially
those with side effects on the Java program, then JNI function
analysis will come into play as introduced in Section III-D.
After analyzing f , the C part processes its return values, wraps
them in a reply, and sends them back to the Java part.

For example, for 4⃝ in Fig. 1, the C part resolves
Java_Image_initColorModel as its target native func-
tion based on the naming convention, and analyzes this func-
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tion. Finally, it finds that the return value is the object created
at 6⃝ and wraps it in the reply to the Java part.

D. JNI Function Analysis for C → J Interaction
JNI function analysis is responsible for analyzing JNI

function calls, specifically C → J interactions. We focus on the
most commonly used JNI functions, which can trigger method
calls, object creation, and field accesses in Java programs.
These functions are invoked from C code but may have side
effects on the Java program. Similar to native call analysis,
this analysis is divided into the C part and the Java part.
The C part collects method, type, and field information at the
JNI function calls, wraps it as a request, and sends it to the
Java part, which models the corresponding behaviors in the
Java program (method calls, object creation, field accesses). If
necessary, the Java part also feeds return values back to the C
part. Below, we introduce both parts in more detail.

a) C Part: As shown in Fig. 2, the C part of JNI
function analysis comprises three handlers: method, object,
and field handlers, each responsible for handling method calls,
object creation, and field accesses, respectively. Due to space
constraints, we will focus on the object handler here, which is
the most complex handler. The details of all three handlers are
formalized in Section IV, where you can refer to the specifics
of the method and field handlers.

The object handler is invoked when processing a call to
the JNI function NewObject, which has two key arguments:
the type of the Java object to create, and the signature of
the constructor for initializing the object. These arguments are
typically obtained from the JNI functions FindClass and
GetMethodID, as indicated by their respective arguments.
The C part uses C pointer analysis to resolve the arguments of
FindClass and GetMethodID, propagating their results to
NewObject. In this manner, the object handler resolves the
type and constructor signatures of the object to be created, and
wraps them as a request to the Java part. For example, when
analyzing NewObject ( 6⃝) in Fig. 1, the C part resolves its
arguments by analyzing FindClass and GetMethodID at
C21 and C22, determining them to be the class ColorModel
and its no-arg constructor. This information is then wrapped
as a request to the Java part.

b) Java Part: Since common JNI functions typically
query or manipulate elements of the Java program, which the
C part cannot access, JNIFER delegates the detailed analysis
of these functions to the Java part. The Java part first retrieves
the signature information from the request sent by the C part,
and then leverages Java pointer analysis to model the behavior
of the JNI functions.

For example, when handling a request for NewObject,
the Java part uses Java pointer analysis to mock a new object,
mark the constructor as a reachable method, and analyze it
with the new object. Finally, the Java part wraps the result
(including the new object) as a reply to the C part.

IV. FORMALISM

In this section, we formalize the JNI analysis of JNIFER,
introduced in Section III. JNIFER is a sophisticated interactive

Instruction Labels i, j ∈ L = LJ ∪ LC

Class Types t ∈ TJ

Methods m ∈ MJ

Method Signatures sm ∈ SJ
m

Variables x, y,mthis,mret, arg ∈ VJ

Fields f ∈ FJ

Field Signatures sf ∈ SJ
f

Objects ot1, o
t
2, ... ∈ OJ

Virtual Pointers vpi ∈ VPJ

Pointers pi, pj ∈ PJ = VJ ∪ (OJ × FJ) ∪ VPJ

Points-to Relation ptJ : PJ → P(OJ)

Fig. 3. Domains and Notations (Java Part).

Instruction Labels i, j ∈ L = LJ ∪ LC

Functions fun ∈ FUNC

Objects oi, oj ∈ OC

Variables x, funret, fid,mid, value ∈ VC

Pointers x ∈ PC = VC ∪OC

Points-to Relation ptC : PC → P(OC ∪ PJ)

Fig. 4. Domains and Notations (C Part).

cross-language pointer analysis, encompassing Java and C
pointer analyses along with complicated native call analysis
and JNI function analysis. We employ standard Andersen-
style analysis [15] for both Java and C pointer analyses.
In addition to the method, object, and field handlers de-
scribed in Section III-D, JNIFER manages various relevant
JNI functions, such as FindClass and GetClassObject
for class retrieval, and GetMethodID and GetFieldID for
ID fetching. Due to space constraints, we cannot formalize the
entirety of JNIFER in this paper. However, JNIFER will be
released as an open-source tool. Here, we first present the
domains and notations used (Section IV-A), and then focus on
the analysis of native calls (Section IV-B) and common JNI
functions (Section IV-C).

A. Domains and Notations

Figs. 3 and 4 illustrate the domains and notations for Java
and C analysis, respectively. We use superscripts J and C to
distinguish between Java and C domains. Most domains are
self-explanatory, but we introduce some special ones below.

In the Java domains, we extend pointers with special virtual
pointers, VPJ , which represent mock variables pointing to
newly created objects by NewObject. We use mthis and
mret to denote the this and return variables of method m, and
argk to represent the k-th argument of a method call.

In the C domains, we extend the points-to relation ptC to
allow a C pointer to point to a Java pointer (PJ ), supporting
the cross-language model described in Section III-B. funret

refers to the return pointer of a C function, while mid and
fid refer to the signatures of a method and field in the Java
program.

Table I shows the domains and notations of interaction mes-
sages Request and Reply of the four types of cross-language
interactions. We use the tuple QJ→C

call [i, sm, y, arg1, ..., argn]
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TABLE I
DEFINITION OF CROSS-LANGUAGE REQUEST AND REPLY

Cross-Language Interaction Request Reply

Native Call Analysis Native Call QJ→C
call = LJ × SJ

m × (PJ)+ RC→J
call = LJ × P(PJ)

JNI Function Analysis

Method Call QC→J
call = LC × SJ

m × (PJ)+ RJ→C
call = LC × PJ

Object Creation QC→J
new = LC × TJ × SJ

m × (PJ)∗ RJ→C
new = LC × VPJ

Field Access Get QC→J
get = LC × PJ × SJ

f RJ→C
get = LC × (OJ × FJ)

Set QC→J
set = PJ × SJ

f × PJ

i : x = y.m(arg1, ..., argn)
m is native

QJ→C
call [i, sm, y, arg1, ..., argn]

[JCALL]

QJ→C
call [i, sm, y, arg1, ..., argn]
fun = resolveN(sm)

y ∈ ptC(funp2)
∀ 1 ≤ k ≤ n : argk ∈ ptC(funpk+2)

RC→J
call [i, ptC(funret)]

[CCALLQ]

RC→J
call [i, ptC(funret)]
pj ∈ ptC(funret)

x = ret(i)

ptJ(pj) ⊆ ptJ(x)
[JCALLR]

Fig. 5. Rules of native call analysis.

i : x = CallMethod(obj,mid, arg1, ..., argn) pj ∈ ptC(obj) sm ∈ ptC(mid) ∀ 1 ≤ k ≤ n : pk ∈ ptC(argk)

QC→J
call [i, sm, pj , p1, ..., pn]

[CCALL]

QC→J
call [i, sm, pj , p1, ..., pn]

oj ∈ ptJ(pj) m′ = dispatch(oj , sm)

oj ∈ ptJ(m′
this) ∀ 1 ≤ k ≤ n : ptJ(pk) ⊆ ptJ(m′

pk)
RJ→C

call [i,m′
ret]

[JCALLQ]
RJ→C

call [i,m′
ret] x = ret(i)

m′
ret ∈ ptC(x)

[CCALLR]

i : x = NewObject(clz,mid, arg1, ..., argn) t ∈ ptC(clz) sm ∈ ptC(mid) ∀ 1 ≤ k ≤ n : pk ∈ ptC(argk)

QC→J
new [i, t, sm, p1, ..., pn]

[CNEW]

QC→J
new [i, t, sm, p1, ..., pn] vpi = mock(i, t)

oti ∈ ptJ(vpi) RJ→C
new [i, vpi] m = dispatch(oti, sm)

oti ∈ ptJ(mthis) ∀ 1 ≤ k ≤ n : ptJ(pk) ⊆ ptJ(mpk)

[JNEWQ]
RJ→C

new [i, vpi] x = ret(i)

vpi ∈ ptC(x)
[CNEWR]

i : x = GetF ield(obj, fid)
pj ∈ ptC(obj) sf ∈ ptC(fid)

QC→J
get [i, pj , sf ]

[CFIELDGET]

QC→J
get [i, pj , sf ]
oj ∈ ptJ(pj)

f = resolveF (sf )

RJ→C
get [i, oj .f ]

[JFIELDGETQ]

RJ→C
get [i, oj .f ]
x = ret(i)

oj .f ∈ ptC(x)
[CFIELDGETR]

SetF ield(obj, fid, value)
pi ∈ ptC(obj) sf ∈ ptC(fid) pj ∈ ptC(value)

QC→J
set [pi, sf , pj ]

[CFIELDSET]

QC→J
set [pi, sf , pj ]

oi ∈ ptJ(pi) f = resolveF (sf )

ptJ(pj) ⊆ ptJ(oi.f)
[JFIELDSETQ]

Fig. 6. Rules of JNI function analysis.

to refer to a request instance of a native call i :
x = y.m(arg1, ..., argn). For example, when analyzing
4⃝ in the Fig. 1, the native call analysis (Java part)

generates a request QJ→C
call [J10, <Image: ColorModel

initColorModel()>, image] and receives a reply
RC→J

call [J10, vpC23]. A similar representation of a message
instance is used for other interactions. Note that the JNI func-
tion SetField does not have a return value, and therefore
does not generate a reply message.

B. Native Call Analysis

Fig. 5 presents the rules for native call analysis. As de-
scribed in Section III-C, native call analysis is divided into
Java and C parts, with rule names following a specific con-
vention: 1) if a rule belongs to the Java (C) part, its name
starts with J (C); 2) if a rule handles a request (reply), its
name ends with Q (R).

[JCALL] is applied when processing a native method call,
generating a request to the C part. Note that sm denotes the
signature of method m.
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[CCALLQ] handles the request in the C part. A helper function
resolveN , corresponding to “Native Function Resolution”
in Fig. 2, is defined to identify the target native function
based on the native method signature sm and the analysis of
RegisterNatives, as described in Section III-C. The rules
for resolveN are omitted here for brevity. After resolving the
target native function fun, [CCALLQ] propagates the arguments
to fun. According to the JNI specification [2], the first
argument of a native function must be the JNI function table
JNIEnv, thus, the indexing of arguments starts from 2.

Finally, [JCALLR] propagates the return values obtained from
the reply, using the helper function ret(i) to retrieve the LHS
variable of call site i.

C. JNI Function Analysis

Fig. 6 presents rules of JNI function analysis, in which the
rule names follow the convention explained in Section IV-B.
Specifically, the rules in the C part correspond to the Method,
Object, and Field Handlers in Fig. 2.

In Fig. 6, the top three rules handle the JNI function
CallMethod. In [JCALLQ], we use the helper function
dispatch(oj , sm) to identify the actual Java method called
from C, based on the type of the receiver object oj and the
method signature sm, following the dispatch semantics of Java
instance methods.

The middle three rules handle NewObject. In [JNEWQ],
the helper function mock(i, t) creates a virtual variable vpi of
type t for instruction i. This variable is used by Java pointer
analysis to point to the object created by the JNI function
NewObject and is later sent to the C part in a reply message.

The bottom five rules handle the JNI functions GetField
and SetField. We use sf to denote the signature of field
f , which is resolved by the helper function resolveF (sf ) to
identify the corresponding Java field. Since SetField does
not generate a reply message, as shown in Table I, there are
no rules required to handle the reply.

V. EVALUATION

In this section, we evaluate the effectiveness of JNIFER by
comparing it with state-of-the-art methods in resolving native
code behaviors. Specifically, we investigate the following
research questions:

RQ1. How does JNIFER compare to state-of-the-art methods
in resolving J → C interactions, specifically native
method calls?

RQ2. How does JNIFER compare to state-of-the-art methods
in resolving the most commonly used C → J inter-
actions, i.e., method calls, object creation, and field
accesses?

RQ3. Is JNIFER efficient?

We first introduce our experimental setup (Section V-A),
and then examine the results for RQ1 (Section V-B), RQ2
(Section V-C), and RQ3 (Section V-D).

TABLE II
RECALL AND RESOLUTION FOR J → C NATIVE METHOD CALLS.

Bench #NMethod JNIFER JN-Sum Native-Scanner

Recall #Res. Recall #Res. Recall #Res.

java.awt 412 374 585 342 624 230 609
java.beans 234 183 396 164 581 146 581

java.io 159 134 150 100 438 120 477
java.lang 196 149 170 103 198 134 504
java.math 121 103 124 74 433 88 465
java.net 209 178 213 131 469 151 508
java.nio 247 221 280 190 536 153 512
java.rmi 145 121 146 79 150 102 467
java.sec. 136 117 150 86 187 99 474
java.sql 105 82 105 61 432 73 436
java.text 120 98 121 72 432 87 473
java.util 234 211 445 174 593 152 611
sun.awt 242 219 453 184 596 156 576

sun.java2d 385 362 562 314 624 220 594
sun.jvm. 97 72 95 55 432 68 436
sun.man. 142 115 141 73 437 104 486
sun.misc 193 170 194 136 467 146 491
sun.net 213 187 227 145 484 150 469
sun.nio 142 121 163 96 460 108 462

sun.pisces 195 178 405 145 570 126 557
sun.ref. 101 77 99 59 432 73 437
sun.rmi 126 93 116 76 435 90 469
sun.sec. 160 133 179 104 456 119 489
sun.text 109 86 108 66 432 78 436
sun.tools 103 82 111 62 432 74 437
sun.util 115 94 114 70 433 84 463
aspectj 103 80 109 CRASH 74 487
lucene 101 78 158 63 465 73 513

tomcat-n. 91 71 186 54 489 65 509
log4j 91 74 150 55 445 66 474

Sum 5027 4263
(84.8%) 6455 3333

(66.3%) 13162 3409
(67.8%) 14902

A. Experimental Setup

JNIFER consists of a Java component and a C component
for analyzing Java programs and C (native) code, which we
implemented on Tai-e [13] and SVF [14], respectively. We run
the experiments on a 64-bit machine with an Intel i7-12700KF
3.6GHz CPU and 128 GB of RAM. Below, we describe several
key setups in our experiments.

a) The Compared Analyzers: We compared JNIFER with
two state-of-the-art native code analyzers, JN-Sum [11] and
Native-Scanner [12]. The original JN-Sum has issues that
cause it to crash on all our benchmarks. To enable it to analyze
more benchmarks, we made two modifications. First, we
modified it to quietly ignore unsupported JNI functions to pre-
vent crashes. Second, we removed erroneous statements from
Java source code generated by JN-Sum (i.e., the summary),
which often contained errors such as assigning a Throwable
object to an int variable. All modifications and fixes will
be provided in the artifact. For Native-Scanner, we utilize its
artifact version to run our experiments.

b) Benchmarks: For a thorough and practical evaluation,
we consider OpenJDK and real-world Java applications as
our benchmarks. OpenJDK extensively utilizes native code,
presenting numerous cross-language behaviors and various JNI
function usages. We choose OpenJDK 8, which is a widely-
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TABLE III
RECALL AND RESOLUTION FOR C → J METHOD CALLS AND OBJECT CREATION.

Bench
Method Call Object Creation

#JMethod JNIFER JN-Sum Native-Scanner #ObjType JNIFER JN-Sum Native-Scanner

Recall #Res. Recall #Res. Recall #Res. Recall #Res. Recall #Res. Recall #Res.

java.awt 60 60 131 15 26 51 7963 30 30 58 5 9 28 2884
java.beans 42 39 64 8 23 40 7773 22 20 28 1 8 22 2757

java.io 10 10 18 3 12 10 7828 3 3 7 1 4 3 2798
java.lang 14 14 22 4 9 11 8298 5 5 9 1 3 2 2910
java.math 7 7 17 2 12 7 7750 1 1 7 1 4 1 2739
java.net 18 18 33 7 17 17 7961 10 10 18 5 8 9 2891
java.nio 13 13 24 4 13 12 8141 6 6 13 2 6 5 2874
java.rmi 13 13 26 3 10 12 7931 5 5 13 1 4 4 2820
java.sec. 11 11 21 3 10 10 7909 4 4 10 1 4 3 2851
java.sql 7 7 17 2 12 7 7675 1 1 7 1 4 1 2679
java.text 8 8 17 2 12 8 7773 2 2 7 1 4 2 2752
java.util 38 38 61 8 23 36 8413 21 21 27 1 8 20 2999
sun.awt 42 42 97 8 26 38 7741 22 22 41 1 9 21 2741

sun.java2d 47 47 124 11 27 42 7899 25 25 54 3 9 24 2842
sun.jvm. 7 7 17 2 12 7 7667 1 1 7 1 4 1 2676
sun.man. 10 10 26 3 12 10 8291 3 3 13 1 4 3 2910
sun.misc 15 15 26 4 13 14 7809 7 7 13 2 5 6 2764
sun.net 19 19 29 7 14 19 8038 10 10 15 4 5 10 2924
sun.nio 9 9 18 3 12 9 8142 2 2 7 1 4 2 2861

sun.pisces 37 37 61 7 23 35 7707 20 20 28 1 8 20 2713
sun.ref. 7 7 17 2 12 7 7672 1 1 7 1 4 1 2680
sun.rmi 10 9 19 3 12 10 7857 3 2 8 1 4 3 2774
sun.sec. 13 13 24 3 12 11 8317 5 5 11 1 4 3 2961
sun.text 8 8 17 2 12 8 7688 2 2 7 1 4 2 2694
sun.tools 7 7 17 2 12 7 7678 1 1 7 1 4 1 2681
sun.util 7 7 17 2 12 7 7713 1 1 7 1 4 1 2709
aspectj 7 7 24 CRASH 7 10797 1 1 7 CRASH 1 3533
lucene 15 11 25 4 14 11 12209 5 3 12 2 5 3 4267

tomcat-n. 17 13 25 4 13 13 7973 7 5 12 2 5 5 2745
log4j 10 10 24 3 12 10 8654 3 3 11 1 4 3 3084

Sum 528 516
(97.7%) 1058 131

(24.8%) 429 486
(92.0%) 245267 229 222

(96.9%) 471 46
(20.1%) 152 210

(91.7%) 86513

used JDK version that serves as the foundation for many Java
applications. Additionally, our benchmarks include all real-
world Java applications previously used in related research
[11], [12], namely aspectj-1.6.9, lucene-4.3.0, tomcat-native-
1.2.23, and log4j-1.2.16.

c) Ground Truth: To evaluate the effectiveness of
JNIFER against other analyzers in terms of soundness and
precision, we need to establish a ground truth for cross-
language interactions within the benchmarks. This ground
truth represents all actual cross-language behaviors at each
interaction site. However, due to the complexity of our bench-
marks, obtaining their complete cross-language interactions
is unrealistic. Therefore, we use runtime instrumentation and
sampling manual studies to establish the ground truth for
soundness and precision, as explained below.

To measure the soundness of the analyzers, we perform
recall experiments on our benchmarks by executing them,
recording runtime cross-language behaviors through JVM
(Hotspot) instrumentation, and comparing these with the re-
sults of static analyzers. For OpenJDK, we run its official
test suites, which are organized into 28 directories, each
corresponding to a JDK package, such as java.lang and java.io.
We randomly selected 100 test cases from each directory

(or all available test cases if fewer than 100), except for
java.time and sun.invoke, where we encountered compilation
issues. For real-world applications, the test suites of aspectj
and lucene depend on complex testing frameworks, making
it impossible for all three analyzers to reach the application
code. Consequently, we manually created test cases for these
projects to trigger as many native method calls as possible. For
tomcat-native and log4j, we utilized their official test suites.

To establish the ground truth for precision evaluation, we
randomly sampled one-third of the benchmarks (10 out of
30). For each selected benchmark, we randomly chose 10
interaction sites (or all available sites if fewer than 10) for
each type of cross-language interaction, and then manually
determined all possible interactions for each call site by
examining the source code.

B. RQ1: Effectiveness of JNIFER for J → C Interactions

Table II presents the results of our recall experiments and
the analysis outcomes of the three analyzers for J → C interac-
tions. The column “#NMethod” shows the number of distinct
native methods reachable at runtime for each benchmark. For
each static analyzer, the column “Recall” shows the number
of runtime-recorded reachable native methods resolved by the
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analyzer, while the column “#Res” represents the total number
of distinct native methods resolved by the analyzer.

JNIFER achieves the highest recall at 84.8%, noticeably
outperforming JN-Sum (66.3%) and Native-Scanner (67.8%).
Upon investigation, we found that the major reason for
JNIFER’s superior recall is its better handling of native method
dynamic binding. For instance, JNIFER comprehensively an-
alyzes RegisterNatives, whereas JN-Sum only supports
its limited usage patterns, and Native-Scanner is unable to
analyze it, leading to missed native methods called from Java.

To examine precision, we randomly sampled 100 distinct
native method call sites and manually inspected their true
target native functions (as mentioned in Section V-A). Overall,
JNIFER resolved 82 sites, JN-Sum resolved 56 sites, and
Native-Scanner resolved 70 sites. We found that all native
functions resolved by the three analyzers were true targets,
achieving a precision of 100%. However, all call sites suc-
cessfully resolved by JN-Sum and Native-Scanner could be
resolved by simple name matching following the conventions
in [2]. In contrast, JNIFER demonstrated a more comprehen-
sive resolution ability by analyzing both name matching and
dynamic binding to resolve more call sites.

C. RQ2: Effectiveness of JNIFER for C → J Interactions

In this section, we evaluate how JNIFER performs compared
to other analyzers in resolving three common types of C → J
interactions: method calls, object creation, and field accesses.
As described in Section V-A, we instrumented cross-language
interaction sites in native code to obtain true runtime behaviors
as ground truth and compared these with the results from the
three static analyzers. The results are presented in Tables III
and IV. In summary, JNIFER outperforms JN-Sum and Native-
Scanner in both soundness and precision for all three types
of C → J interactions, with significant soundness advantages
over JN-Sum and substantial precision advantages over Native-
Scanner. Detailed results are explained below.

a) Method Calls and Object Creation: Table III presents
the true cross-language interactions collected via runtime
instrumentation and the results of the three static analyzers
for method calls (left half) and object creation (right half).
The column “#JMethod” indicates the number of distinct Java
methods called from native code, and the column “#ObjType”
shows the number of distinct types of Java objects created from
native code, both collected at runtime in our benchmarks. For
each static analyzer, the column “Recall” shows the number of
runtime-recorded Java methods and types it resolved, while the
column “#Res” indicates the total number of distinct reachable
Java methods and created types of Java objects resolved from
native code, respectively.

JNIFER achieves the highest recall, with 97.7% for method
calls and 96.9% for object creation, by resolving nearly all true
Java methods called from native code and all true types of Java
objects created from native code in our experiments. Despite
we fixed numerous errors in its generated Java summary, JN-
Sum still has a low recall of only 24.8% for method calls and
20.1% for object creation. This is because it supports only a

TABLE IV
RECALL AND RESOLUTION FOR C → J FIELD ACCESSES.

Bench #Field JNIFER JN-Sum

Recall #Res. Recall #Res.

java.awt 114 101 156 14 49
java.beans 21 15 51 5 39

java.io 12 12 17 5 38
java.lang 11 10 15 5 17
java.math 11 10 15 5 38
java.net 51 39 57 17 47
java.nio 41 41 52 23 53
java.rmi 25 18 29 5 22
java.sec. 17 16 39 6 37
java.sql 11 10 15 5 38
java.text 11 10 15 5 38
java.util 33 33 57 19 39
sun.awt 89 89 129 7 50

sun.java2d 114 107 175 7 50
sun.jvm. 10 9 14 5 38
sun.man. 23 16 27 5 38
sun.misc 46 26 37 19 46
sun.net 47 40 63 16 46
sun.nio 12 12 18 5 38

sun.pisces 24 21 44 5 39
sun.ref. 11 10 15 5 38
sun.rmi 15 10 16 5 38
sun.sec. 42 35 47 23 42
sun.text 11 10 15 5 38
sun.tools 11 10 15 5 38
sun.util 11 10 15 5 38
aspectj 11 10 14 CRASH
lucene 20 16 27 5 38

tomcat-n. 25 21 47 5 38
log4j 30 23 35 5 38

Sum 910 790 (86.8%) 1271 246 (27.0%) 1146

subset of the C language and misses some important C features
used in native code, such as variadic function calls, leading
to an inability to resolve many method IDs in complex real-
world native code. Native-Scanner achieved a fairly high recall
of 92.0% for method calls and 91.7% for object creation, but
at the cost of extremely low precision, as explained below.

In our study, JNIFER achieved a high precision of 99.0%
for method calls and 97.3% for object creation, thanks to its
interactive pointer analysis approach. While JN-Sum reached
a precision of 100.0% for both types of interaction, it was
only able to resolve a limited number of interaction sites with
simple patterns. Specifically, among the 100 studied C →
J method call sites, JN-Sum resolved only 6 sites, whereas
JNIFER resolved all 100 sites.

Native-Scanner’s precision is very low, at just 0.012%
for method calls and 0.14% for object creation, because of
its conservative assumption that every Java method or type
matching any signature extracted from native code can be
invoked or created from native code.

The loss of JNIFER’s precision primarily stems from its
flow-insensitive pointer analysis, which leads to imprecise
points-to sets. A typical example occurs in OpenJDK’s native
code (X11Color.c), where a pointer (awt_colormodel)
is reused for class lookups with a JNI object creation call
in between. Because flow-insensitive analysis does not dis-
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tinguish successive assignments to the same pointer, JNIFER
imprecisely determines that the pointer could simultane-
ously reference multiple classes (DirectColorModel and
ComponentColorModel), resulting in a false positive. This
limitation could be alleviated in the future by incorporating
Static Single Assignment (SSA).

b) Field Accesses: Table IV presents the evaluation re-
sults for Java field accesses (both get and set) from native code.
The column “#Field” indicates the number of distinct Java
fields accessed from native code at runtime. For each static
analyzer, the column “Recall” shows the number of runtime-
recorded Java fields it resolves, and the column “#Res” shows
the total number of fields resolved as being accessed from
native code by the analyzer. Native-Scanner does not support
analysis of field accesses in native code, hence it is excluded.

JNIFER significantly outperformed JN-Sum in the recall of
resolving field accesses, achieving an average recall of 86.8%
compared to 27.0% for JN-Sum. A large number of field
accesses are missed by JN-Sum due to its incorrect handling
of static native method calls. In static native methods, the
first argument should be the Java class, which is frequently
used to obtain Java field IDs in native code. However, JN-
Sum assumes that the first argument of a native method is
the this object. This incorrect assumption results in significant
recall losses in resolving field accesses.

For precision, JNIFER and JN-Sum resolved 73 and 30
sites, respectively, out of the 100 field access sites studied.
We manually verified that the field accesses resolved at each
site were true positives. Similar to its performance in resolving
method calls and object creation, JN-Sum could only resolve
straightforward patterns of field accesses, demonstrating sig-
nificantly less effectiveness compared to JNIFER.

D. RQ3: Is JNIFER Efficient?

We need to examine the efficiency of JNIFER, JN-Sum, and
Native-Scanner with caution, as they employ entirely different
approaches for resolving native code. Each tool’s underly-
ing analysis architecture is distinct and developed based on
different frameworks. Specifically, Native-Scanner analyzes C
binaries and extracts strings for Java analysis, while JN-Sum
first analyzes C source code and then transforms it into Java
source code. In contrast, JNIFER directly analyzes the source
code of both Java and C simultaneously.

These differences introduce various factors affecting the
efficiency of each tool. Despite these variations, JNIFER ex-
hibits the best performance in analysis speed, with an average
analysis time of 273 seconds. This is 1.2 times faster than
Native-Scanner’s 330 seconds and 2.4 times faster than JN-
Sum’s 663 seconds.

Out of the 30 benchmarks, JNIFER was faster than both
Native-Scanner and JN-Sum in 24 cases. However, JNIFER
was slower on three specific benchmarks (i.e., java.awt,
java.beans, and sun.java2d), with an average of 958 seconds
slower than Native-Scanner and 527 seconds slower than JN-
Sum. Additionally, in three other benchmarks (i.e., java.util,
sun.awt, and sun.pisces), JNIFER was 119 seconds slower

than Native-Scanner but 204 seconds faster than JN-Sum on
average. The increased analysis time can be attributed to the
extensive use of difficult-to-analyze reflection invocations in
these benchmarks, which ultimately slowed down the overall
analysis process.

E. Threats to Validity

One potential threat to the validity of our evaluation is
that we did not cover all of OpenJDK’s official test cases,
which may affect the reliability of our results. We mitigate this
threat by focusing on the test cases in the “java” and “sun”
directories, which represent the most widely used and critical
functionalities of OpenJDK. While this approach does not
cover every test case, we believe it ensures that our evaluation
is representative and reliable.

Another concern is that the ground truth used to evaluate
the precision of JNIFER and the compared analyzers was con-
structed manually, which may introduce errors. Tracking the
arguments of certain cross-language interaction sites, which
determine the targets of these sites, is particularly challenging
because these arguments are passed across multiple functions.
We mitigate this threat by manually tracing the call stack
upwards and inspecting all callers to identify the source
of these arguments, thereby determining the targets of the
cross-language interaction sites. Furthermore, a second author
reviewed and double-checked the identified targets to ensure
the correctness of the ground truth.

VI. RELATED WORK

JNIFER resolves native code in Java programs via interac-
tive cross-language pointer analysis. There are two categories
of works that are most closely related to ours. The first
category is analyzing cross-language interactions between Java
and native code. The second category is JNI analysis clients
such as JNI specification violation and vulnerability detection.

a) Cross-Language Interaction Analyses: JN-Sum [11],
Native-Scanner [12], and MultiQL [25] offer distinct ap-
proaches to resolving cross-language interactions but they all
do not comprehensively handle the JNI mechanism. JN-Sum
provides an abstract interpretation only applicable to a subset
of C, suffering from robustness issues that limit its practical
applicability. Native-Scanner identifies Java callbacks in native
code by extracting string constants but suffers from high
false positives due to its assumption. MultiQL is a declarative
static analysis approach based on CodeQL for JNI programs
with dataflow analysis. It can not support object creation
analysis. Though MultiQL has published its source code,
we found that it could not be compiled and executed. After
contacting the authors, we confirmed that their tool is currently
non-functional. Therefore, we did not include a comparison
between JNIFER and MultiQL.

ILEA [26] transforms C source code into an extended Java
Virtual Machine Language (JVML). However, this extended
JVML does not support the full semantics of C, leading to
bytecode that may not preserve the original C code’s semantics
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and may miss cross-language interactions. Additionally, the
ILEA tool is currently not available.

Other works focus on native binary analysis of Android
apps. Patrik et al. [27] focus on Dalvik bytecode analysis and
binary analysis with program slicing to analyze some taint
flows in the native binaries. JSADEC−∗ [28] decompiles the
native binaries of Android apps to C code and uses JN-Sum
to analyze the native code. Some other methods [3], [4], [29]
use symbolic execution, which results in scalability issues for
large codebases. In contrast, our work provides an interactive
cross-language pointer analysis that accurately captures the
cross-language interactions.

b) JNI Analysis Clients: Many existing approaches focus
on monitoring and instrumenting JNI programs. SafeJNI [30]
and Jinn [31] insert detection constraints and instrumentations
for different JNI specification rules before and after the
language boundary, i.e., native method calls and JNI function
calls, to monitor the running status of JNI programs. They
can accurately report violations when constraints are breached
during execution. Other works use static analysis to detect
JNI specification violations. Furr et al. [32] build a type
system to infer possible Java types that JNI function call
arguments may refer to, checking if they conform to the JNI
specification. Li et al. [7]–[9] model how JNI functions affect
the JVM’s exceptional state and detect missing error checks in
JNI programs. Kondoh et al. [6] detect missing error checks,
JVM local resource leaks, and improper access to JVM critical
regions through typestate analysis.

CSS [5] provides a caller-sensitive cross-language taint
analysis for native code, analyzing pre-tainted sources in
a demand-driven way. CHERI [33] extends Java’s security
model to native code using hardware-assisted implementation,
detecting vulnerabilities that bypass memory protection and
high-level security policies, enforcing memory safety and
compartmentalization. NCScope [34] uses hardware-assisted
methods to collect execution traces and memory data of An-
droid apps, detecting self-protection and anti-analysis mecha-
nisms and diagnosing memory corruption bugs. NATIDROID
[35] maps permissions for Android APIs, focusing on native
library permissions, and detects vulnerabilities like permission
over-privilege and component hijacking. µDep [36] provides
a hybrid analysis framework using lightweight static binary
analysis with differential fuzzing to identify dependencies
between arguments and return values of native methods,
detecting sensitive information flows in Android native code.
LibDroid [37] offers a static analysis framework summarizing
information flows within Android native binaries to identify
potential security vulnerabilities, such as misuse of sensitive
information. Gu et al. [38], [39] detect potential JNI global
reference exhaustion with a hybrid analysis for Android native
code. They analyze call graphs of Android system service code
to identify potentially vulnerable APIs and automatically tests
the findings to reduce false positives.

VII. CONCLUSION

We introduced JNIFER, the first interactive cross-language
pointer analysis for resolving Java native code. JNIFER ef-
fectively integrates Java and C pointer analyses, enabling on-
the-fly resolution of native calls (Java→C) and JNI function
calls (C→Java). Extensive experimental results demonstrate
that JNIFER significantly outperforms state-of-the-art native
code analysis tools in terms of soundness, while maintaining
high precision and efficiency. We expect that the design
methodology of interactive cross-language pointer analysis
underlying JNIFER can facilitate the development of other
client analyses requiring more sound control and data flow
handling between Java and C. Furthermore, the methodology
may also inspire interactive pointer analysis between other
programming languages, like Python and C.
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