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Abstract—General frameworks such as FlowDroid, IccTA,
P/Taint, Amandroid, and DroidSafe have significantly advanced
the development of static analysis tools for Android security
by providing fundamental facilities for them. However, while
these frameworks have been instrumental in fostering progress,
they often operate with inherent inefficiencies, such as redun-
dant computations, reliance on separate tools, and unnecessary
complexity, which are rarely scrutinized by the analysis tools
that depend on them. This paper introduces PacDroid, a new
static analysis framework for detecting security vulnerabilities in
Android apps. PacDroid employs a simple yet effective pointer-
analysis-centric approach that naturally manages alias informa-
tion, interprocedural value propagation, and all Android features
it supports (including ICC, lifecycles, and miscs), in a unified
manner. Our extensive evaluation reveals that PacDroid not only
outperforms state-of-the-art frameworks in achieving a superior
trade-off between soundness and precision (F-measure) but also
surpasses them in both analysis speed and robustness; moreover,
PacDroid successfully identifies 77 real security vulnerability
flows across 23 real-world Android apps that were missed by
all other frameworks. With its ease of extension and provision of
essential facilities, PacDroid is expected to serve as a foundational
framework for various future analysis applications for Android.

I. INTRODUCTION

Android, launched over a decade ago, has evolved into
one of the most widely adopted operating systems globally.
As of now, billions of people use smartphones worldwide,
with 72.15% of these users running the Android OS [1], [2].
This vast user base highlights the importance of maintaining
the security of the apps available on this platform. However,
the lack of thorough verification of Android apps has led to
numerous security issues, including data leaks and various
vulnerabilities [3]. To enhance Android security, static analysis
has proven to be a valuable method by detecting potential
vulnerabilities before they can be exploited [4]–[13].

To enable effective static security analysis, it is essential to
provide a set of fundamental facilities tailored to the Android
ecosystem. Representative frameworks in this domain include
FlowDroid [4], IccTA [5], P/Taint [6], Amandroid [7], and
DroidSafe [8], which address critical Android features such as
lifecycle management (entry points, callbacks, layouts, etc.),
inter-component communication (ICC), and Android-specific
data structures (intents, bundles, shared preferences, etc.).

These few general frameworks have greatly fostered the
development of numerous effective Android security tools by
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providing essential facilities for Android static analysis [11]–
[13]; however, these security tools often focus on utilizing the
functionalities provided by the frameworks without question-
ing their design rationale. Despite their success, these popular
frameworks possess potential design flaws. For instances,
IccTA and DroidSafe rely on separate tools like IC3 [14] and
JSA [15] respectively, to resolve intents and other potential
features beforehand. This reliance not only introduces extra
time but also ties the framework’s reliability to these pre-
analysis tools. FlowDroid and IccTA reanalyze the program
after each iteration of detecting new callbacks to extend the
call graph until no new edges are added. This approach
results in redundant computations and can slow down the
analysis. Frameworks like P/Taint and FlowDroid itself adopt
a highly conservative approach when constructing ICC taint
flows, leading to imprecise results, while Amandroid employs
multiple types of graphs, such as ICFG, DFG and DDG,
increasing the overall complexity of the analysis.

In this work, we aim to achieve the following goals through
a simple yet effective approach: a) to overcome the issues
of existing frameworks mentioned earlier by offering a faster
analysis with better trade-off between precision and soundness
(a more sound analysis means resolving more real program
behaviors); b) to build comprehensive value flows needed for
taint analysis in Android. This requires handling alias infor-
mation, interprocedural value propagation, and all Android
features such as ICC, lifecycles and miscs, in a unified manner.

We thus present PacDroid, where we propose to analyze
all Android features utilizing a pointer-analysis-centric (PAC)
approach, first demonstrating that all such features can be
effectively analyzed through pointer analysis, and built upon
the plugin system of Tai-e [16], a state-of-the-art static analysis
framework which offers an effective pointer analysis system
for pure Java without any support for Android analysis. In
PAC, each Android feature handling is treated as a plugin that
interacts with the PAC engine, centered on pointer analysis,
via several straightforward interfaces. All Android feature
handlers, along with alias computation and interprocedural
value flow, operate on and propagate along the same graph,
the Pointer Flow Graph (PFG) [17], which underpins the taint
analysis. The PAC approach eliminates the need to reanalyze
the program after each iteration since the call graph and all
features are resolved on the fly. It also removes the need
for separate tools, as all features are handled and values are
propagated by the pointer analysis. Such unified approach
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offers several benefits: When a new Android feature is added,
it can be easily integrated as a new plugin that cooperates with
the pointer analysis. Improvements in the resolution of any
feature (making it more sound or precise) will be propagated
to other feature handlings via pointer analysis, while the
enhancements to the pointer analysis will also automatically
benefit all feature handlings. The simple design philosophy of
PAC will ease both implementation and extensibility.

To thoroughly evaluate PacDroid, we compared it with state-
of-the-art general Android analysis frameworks: FlowDroid,
IccTA, P/Taint, and Amandroid. Given that the latest version
of FlowDroid has integrated IccTA for analyzing ICC, and
IccTA relies on FlowDroid as its foundation (with IccTA now
maintained by FlowDroid), we refer to their combination as
FlowIccTA throughout this paper. DroidSafe is excluded from
the evaluation as it does not support Android versions higher
than 19 (the latest version is 34), and it fails to analyze all
the 24 programs in ICC-Bench [18], and has thus also been
omitted from recent works [19]. Our evaluation utilized an
extensive set of benchmarks, including DroidBench [20], ICC-
Bench [18], and the recent UBCBench [21], with additional
features incorporated.

Experimental results show that PacDroid outperforms the
other frameworks in terms of F-measure (a higher F-measure
value indicates a better trade-off between soundness and
precision), analysis speed, and robustness (analysis crash
rate). Specifically, PacDroid achieved an F-measure of 90%,
compared to 77% for FlowIccTA, 72% for P/Taint, and 65%
for Amandroid. It is also 2.6x, 28.8x, and 4.4x faster than
FlowIccTA, P/Taint, and Amandroid, respectively, and has the
lowest crash rate of 4%, compared to 27% for FlowIccTA,
8% for P/Taint, and 6% for Amandroid. Moreover, out of 250
real taint flows across 45 real-world Android apps, PacDroid
successfully detected 187 taint flows, compared to 50 for
FlowIccTA, 50 for P/Taint, and 67 for Amandroid; notably,
PacDroid detected 77 real taint flows across 23 apps that were
missed by all other frameworks, demonstrating its superior
capability in detecting vulnerabilities in the real world.

In summary, this work makes the following contributions.
• We introduce PacDroid, a new static analysis framework

for detecting security vulnerabilities in Android apps.
PacDroid employs a principled pointer-analysis-centric
(PAC) approach to handle various Android features in
a unified manner, which enables PacDroid to incorporate
distinctive designs for Android feature handling, such as
integrated ICC and intent analysis.

• We conduct a comprehensive evaluation, showing that
PacDroid not only outperforms state-of-the-art frame-
works in achieving a superior soundness-precision trade-
offs (F-measure), but also surpasses them in both analysis
speed and robustness. Moreover, PacDroid successfully
detects 77 real vulnerability flows across 23 real-world
Android apps, where all other frameworks fail.

• We offer a fully open-source implementation of PacDroid
and an artifact to reproduce all the experimental results
at https://doi.org/10.5281/zenodo.14749910.

The security team of a Fortune Global 500 software com-
pany has developed 40 Android vulnerability analyses based
on PacDroid (implemented as 40 handlers of PacDroid). These
analyses have been integrated into the company’s regular
DevSecOps security scans. Over the past two months, 8 to 10
Android apps are analyzed daily, identifying over 100 potential
vulnerabilities on average each day. This further demonstrates
PacDroid’s potential in real-world Android security analysis.

II. A MOTIVATING EXAMPLE

Inter-Component Communication (ICC) is a critical feature
in Android, with intents serving as the medium for commu-
nication among components. Figure 1 depicts a simplified
real code involving explicit and implicit intents in ICC. In
this section, we use this example to illustrate the benefits of
PacDroid’s pointer-analysis-centric (PAC) approach in effec-
tively integrating ICC and intent analysis, and how it addresses
complexities that previous frameworks fail short of handling.

First, let’s understand this example. It involves three com-
ponents: two Activities (line 1 and line 8) and a Receiver
(line 20). In line 4, an explicit intent object o1 (pointed
to by i1) is created, with its target component explicitly
specified as Activity2.class. This means the target
component sent by calling startActivity(i1) in line
6 is Activity2, and the intent received by getIntent()
in line 11, pointed to by r1, is o1. In line 15, an implicit
intent object o2 is created, with its target component implicitly
specified by the string value of its constructor’s argument
action. The value of action is retrieved in line 12 and
stored in line 5 through the map-like extra information of
intent o1, which is xxx.ACTION. To determine the target
component of o2 sent by sendBroadcast(i2) (line 17),
Android uses the xxx.ACTION value to match the component
in the AndroidManifest.xml file, which is Receiver1 in this
case (line 26). As a result, intent o2 should be passed to r2 in
line 21, forming an ICC flow from i2 in line 17 to r2 in line
21, and making i2 in line 16 an alias of r2 in line 22. This
establishes a taint flow from line 14 to line 23 through the ICC
flow between components Activity2 and Receiver1.

a) Previous Work: Previous frameworks like FlowIccTA,
Amandroid, and DroidSafe handle features like ICC and
intents separately, and cannot resolve the ICC flow in Figure 1.
Take FlowIccTA as an example. Before applying ICC analysis,
it uses a separate intent resolution tool called IC3 to resolve
intent-related string values. In Figure 1, IC3 correctly resolves
that the target component of intent o1 in line 4 is Activity2
and identifies the extra information of o1 in line 5. However, it
fails to resolve the string value of action in line 15 because
it does not know what r1 (line 12) points to at that moment, as
ICC analysis has not yet been applied. Consequently, it cannot
resolve the target component of the implicit intent o2 in line
15. This leads to missing the ICC flow from i2 in line 17 to
r2 in line 21, and thus the taint flow from line 14 to 23. On
the other hand, P/Taint, like the original FlowDroid, handles
ICC conservatively by treating any getIntent() (e.g., the
one in line 11) as a source and any startActivity()
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8 class Activity2 extends Activity {
9 protected void onCreate(Bundle b) {
10 …
11 Intent r1 = getIntent();
12 String action = r1.getStringExtra("act");
13 if (action != null) {
14 String s = source(); //source, so
15 Intent i2 = new Intent(action); //o2
16 i2.putExtra("tainted", s);
17 sendBroadcast(i2);
18 }…
19 }}

20 class Receiver1 extends BroadcastReceiver {
21 public void onReceive(Context c, Intent r2) {
22 String tainted = r2.getStringExtra("tainted");
23 sink(tainted) //sink
24 }}

②
③

④
⑤

⑥
⑦
⑧

⑨
⑩

Update r1’s PTS with o1 (i.e., let r1 point 
to o1) based on the ICC relation between 
Activity1 and Activity2 resolved in ③

Obtain r1’s PTS, i.e., o1 (thanks to the PTS 
update in ④); resolve action’s value 
based on intent o1’s extra info resolved in 
②, and update action’s PTS with 
“xxx.ACTION” (as a string constant object)

Obtain i2’s PTS, i.e., o2, and action’s PTS, 
i.e., xxx.ACTION; resolve o2’s intent info 
as  ⟨o2, xxx.ACTION⟩ 
Obtain i2’s PTS, i.e., o2, and s’s PTS, i.e., 
source object so; resolve intent o2’s extra 
info as ⟨o2, ⟨“tainted”, so⟩⟩
Obtain i2’s PTS, i.e., o2, determine the 
target component of Activity2 is 
Receiver1 based on o2’s intent info 
“xxx.ACTION” resolved in ⑥ along with 
the info in lines 26 and 28

Update r2’s PTS with o2 (i.e., let r2 point 
to o2) based on the ICC relation between 
Activity2 and Receiver1 resolved in ⑧

Obtain r2’s PTS, i.e., o2; resolve tainted’s 
value based on intent o2’s extra info 
resolved in ⑦, and update tainted’s PTS 
with the source object so

① 

1 class Activity1 extends Activity {
2 protected void onCreate(Bundle b) {
3 …
4 Intent i1 = new Intent(this, Activity2.class); //o1
5 i1.putExtra(“act", “xxx.ACTION");
6 startActivity(i1);
7 }}

①

②

③

④

⑤

⑥

⑦

⑧

⑨

⑩

IntentInfo
Analysis

SendICC
Analysis

IntentExtra
Analysis

Engine

Update
Notify

(Write)
(Read)

25 //AndroidManifest.xml
26 <receiver android:name="Receiver1" >
27 <intent-filter>
28 <action android:name=“xxx.ACTION" />
29 </intent-filter>
30 </receiver>

Obtain i1’s points-to set (PTS), i.e., o1; 
resolve o1’s intent info as 
⟨o1, Activity2.class⟩ (means o1’s target 
component is Activity2)
Obtain i1’s PTS, i.e., o1, resolve intent o1’s 
extra info as ⟨o1, ⟨“act”, “xxx.ACTION”⟩⟩ 
(extra info serves like a map-like field of 
intent object)
Obtain i1’s PTS, i.e., o1, determine the 
target component of Activity1 is Activity2 
based on o1’s intent info resolved in ①

Fig. 1. A simplified real code illustrating integrated ICC and intent analysis in pointer-analysis-centric approach (PAC)

(e.g., the one in line 6) as a sink without resolving the intent
information, which can result in many false ICC flows.

b) Our Work: PacDroid adopts a pointer-analysis-centric
approach (PAC) to manage various Android features in a
unified manner. In PAC, each feature handler obtains points-to
set information for any variable via the PAC engine and reflects
the side effects of feature handling by updating the points-to
set of related variables. Consequently, the side effects of one
feature handler are propagated by pointer analysis, meaning
any side effect of any feature handler can be notified (by
the engine) to all other feature handlers through the whole-
program points-to information.

Now we invite readers to follow the ten self-explanatory
steps in Figure 1 to grasp the workings of PAC and understand
how PacDroid detects the taint flow from lines 14 to 23 by
resolving the ICC flow from lines 17 to 21. For the case of
Figure 1, the PAC approach involves three analyses: IntentInfo,
IntentExtra, and SendICC, all interacting with the PAC engine,
which manages the whole-program points-to information.

To facilitate understanding these ten steps, we illustrate Step
1⃝ here, with readers encouraged to follow the subsequent

nine steps similarly. Step 1⃝, highlighted in yellow, is part
of the IntentInfo analysis and corresponds to handling the
statement in line 4, as identified by the step number. From
a Java semantics perspective, this is a typical new statement,
so the pointer analysis will create an object o1 of type
Intent, invoke its constructor with two arguments, and let
i1 point to o1. Consequently, IntentInfo analysis can directly
obtain the points-to set information of i1 (i.e., which objects
i1 points to) from the engine. The yellow arrow on the

right side of the step rectangle signifies obtaining points-to
information from the engine. Note that the engine actually
proactively notifies the points-to information whenever related
variables are updated, which we will explain in Section III.
For now, you can consider it a read operation from the
engine for simplicity. According to the semantics of Intent’s
constructor with a meta-class object Activity.class as
the second argument (line 4), IntentInfo analysis can resolve
that the target component of intent object o1 is Activity2
and record it as <o1,Activity2.class> for future use.
This result is a global intermediate analysis result accessible
by any feature handler. Since it does not modify the points-
to set of any variable, no update operation to the engine is
required (unlike the blue arrow in Step 4⃝).

After understanding these ten steps, we now provide key
summarizations to enhance comprehension. In this case, In-
tentInfo analysis relies on IntentExtra analysis to resolve the
target component (e.g., intent o2 in line 15 needs to resolve
action, whose value is extra information from another intent
o1). IntentExtra analysis further depends on SendICC analysis
to identify which intent objects the extra information belongs
to (e.g., the intent object pointed to by r1 in line 12 should
be resolved first by SendICC analysis before identifying the
xxx.ACTION value of the key act stored in line 5). This
interdependence of feature handling is managed by PAC,
which enables on-the-fly resolution of all feature handlers in
conjunction with pointer analysis, in a decoupled manner. PAC
naturally resolves scenarios involving multiple features, fun-
damentally differing from existing frameworks where feature
handling is separate, as previously described.
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III. DESIGN OF PACDROID

First, we present an overview of PacDroid, detailing its basic
components, including the PAC engine and various Android
feature handlers, and outlining the high-level idea of how the
PAC approach enables them to work collaboratively. Subse-
quently, we delve into the detailed PAC approach, providing
an explanation of the PAC engine algorithm and a template
for the Android feature handlers’ algorithms.

A. Overview of PacDroid

PacDroid contains two key parts: the PAC engine and vari-
ous Android feature handlers that interact with it (Figure 2).

a) The PAC engine: It is based on the plugin system of
Tai-e [16], a state-of-the-art static analysis framework for Java
that does not support Android analysis at all. The core of the
PAC engine is a whole-program pointer analysis that maintains
the points-to information of all variables in a program, by
manipulating the traditional pointer flow graph (PFG) [17]
(Details on PFG are omitted as they are not essential for
understanding PacDroid). As shown in Figure 2, the PAC
engine acts as a delegation agent, providing facilities that
enable feature handlers to read and write whole-program
points-to information (expressed in PFG) in a decoupled
manner. This design allows handlers to remain independent
of the complex pointer analysis algorithm. Any changes to a
variable’s points-to set in a handler are notified to all other
handlers by the engine, and any side effects from handlers
on variables are updated through the engine to the whole-
program points-to information (The detailed algorithms will
be explained in Section III-B). Consequently, the effects of
each handler reinforce one another, as illustrated in the case
of Figure 1. Moreover, any improvements in handler or pointer
analysis (e.g., precision) will benefit all handlers.

PacDroid supports four categories of Android feature han-
dlers, as shown in Figure 2: ICC, Lifecycle, Misc, and other
feature analyses. Below is a brief introduction to each category.

b) ICC analysis: A simple usage scenario of SendICC
and IntentInfo analyses has been presented in Section II. The
ReplyICC analysis complements the SendICC analysis, while
the Message analysis handles another communication scheme
among various components and the service component. The
Message analysis is more complex than intent analysis, as it
relies on the results of the latter. Unlike existing frameworks
that handle features like intents and ICC separately, our PAC
approach integrates them into one. As shown in Section II,
PacDroid handles complex implicit intents to further resolve
implicit ICC by using several handlers: the IntentExtra Handler
(in Misc analysis) to parse extra information from intent
objects, the IntentInfo Handler to process the strings used
in implicit ICC, and the SendICC Handler to match these
strings with configuration items in the AndroidManifest.xml
to identify target components and resolve the data flows
of implicit intents. In contrast, frameworks like FlowIccTA,
DroidSafe and Amandroid resolve these features, including the
implicit data flows of intents and ICC, separately, making it
difficult to leverage one feature analysis to on-the-fly improve

Whole-Program
Points-To

Information

Read

Write

Lifecycle Analysis
Callback Analysis

Entrypoint Analysis

Callback Analysis

DyRegister Analysis

Lay
out

 Analysis

Misc Analysis

Callback Analysis
IntentExtra Analysis

SharedPref Analysis

AsyncTask Analysis
OtherMisc Analysis

Callback AnalysisIntentInfo Analysis Callback AnalysisMessage Analysis

Callback AnalysisSendICC Analysis Callback AnalysisReplyICC Analysis

ICC Analysis

Callback AnalysisReflection Analysis Callback AnalysisLambda Analysis

Callback AnalysisNative Code Analysis Callback AnalysisAndroid X-Feature Analysis 

Other Feature Analyses

The

: Update
: Notify

PAC E g nn i  e 

Fig. 2. Overview of PacDroid.

another, as explained in Section II. Specifically, FlowIccTA
and DroidSafe first use IC3 and JSA to preprocess the strings
involved in ICC, and then use the results to apply ICC analysis
in later stages, which cannot handle implicit ICC cases like
those in Figure 1. Similarly, Amandroid also fails to handle
such cases effectively. It first preprocesses ICC-related strings,
then extract the strings to resolve ICC using data flow analysis.
When ICC cannot be resolved, it conservatively matches all
other components like what P/Taint does, as described in
Section II, leading to many false ICC flows.

c) Lifecycle analysis: It adds to the analysis the methods
that are registered by calling Android’s APIs in the code or
configured in files. Specifically, Entrypoint analysis resolves
and adds the event methods of Android components specified
in AndroidManifest.xml, while Layout analysis identi-
fies and incorporates the callback methods for activity compo-
nents configured in Layout.xml. Callback analysis resolves
callback methods (e.g., onClick) registered in the code
(e.g., through a system call setOnClickListener(c))
and incorporates callback methods into the analysis. To handle
callbacks, frameworks like FlowIccTA and Amandroid create
a dummy main method as the analysis entry. When they
resolve a callback method cbm, they add cbm to main and
reanalyze the program starting from main to exploit more
reachable callback methods possibly invoked from cbm. This
process repeats until no new call graph edges are added. To
avoid the redundant computations caused by reanalyzing a
program constrained by the dummy main strategy, PacDroid
adopts an on-the-fly scheme for callback analysis, enabled
by PAC: whenever a new callback method is resolved, it is
added to the set of methods to analyze. The PAC engine’s
pointer analysis solver then treats this callback method like any
other newly reachable method found after resolving a normal
callsite, thereby avoiding a full program reanalysis.
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d) Misc analysis: It encompasses a set of Android anal-
yses that are important but not included in the ICC and
Lifecycle analyses. For example, we have seen the IntentExtra
analysis in Section II. SharedPref analysis resolves another
crucial data structure in Android, which involves two nested
maps with value dependency inside, making it more complex
than IntentExtra. AsyncTask analysis resolves asynchronous
methods invoked from Android apps and adds them to the set
of reachable methods to analyze. OtherMisc analysis includes
the analyses to address or partially address other Android
features like WebView, TextView Hint and Handler.

e) Other Feature analyses: As Android apps are en-
coded in Java, to deliver an effective analysis, we must also
handle Java features that may affect the analysis, such as
reflection [22], lambda expressions, and native code. The
handling of these features in PacDroid is similar to P/Taint,
which offers more advanced analyses for certain features than
other frameworks. Thanks to the PAC approach, we can also
integrate these Java feature analyses as feature handlers, like
other analyses in PacDroid, as shown in Figure 2. The Android
X-Feature analysis shown in the figure indicates that any new
feature introduced by Android in the future, can be addressed
as an additional handler of PacDroid. Note that PacDroid
currently does not support implicit control flow analysis, which
involves correlating path conditions. This decision is based on
King’s study [23], which found that such analysis can signif-
icantly overwhelm the results with many false positives [6].

B. The Pointer-Analysis Centric (PAC) Approach

We detail the two algorithms underpinning the PAC ap-
proach. Specifically, Algorithm 1 outlines the operation of the
PAC engine, which builds upon the plugin system of Tai-e
but includes enhancements by PacDroid for Android analysis.
Algorithm 2 shows the core template for PacDroid’s Android
feature handlers, outlining how each handler functions and
interacts with the engine. Currently, all 17 Android feature
handlers of PacDroid were developed following this template.

For conciseness, Algorithm 1 shows the core of the PAC
engine, excluding the pointer analysis handling, which is
relatively standard [24]. It is assumed that pointer analysis runs
on-the-fly within the current engine, processing each normal
statement such as new, assign, load, and store, updating the
related points-to sets for the involved variables, and adding
them to the worklist. The key structure of the algorithm
comprises two nested while loops, as shown from lines 3
to 8. The outer loop and the ONPHASEFINISH call in line
8, introduced by PacDroid, are designed to optimize specific
Android analyses, which will be explained later.

Now, let us examine these two algorithms. Functions ON-
START() and ONFINISH(), called in lines 2 and 9 of Algo-
rithm 1 and defined in lines 2 and 20 of Algorithm 2, manage
the steps before and after a feature analysis implemented by
its handler registered in PacDroid. Specifically, ONSTART()
adds the entry point, specifying the methods of the app where
the analysis begins, to the set of methods to analyze by calling
ADDNEWMETHOD(). ONFINISH() reports analysis results.

Algorithm 1: PAC Engine
1 workList ← [], handlers ← registered handlers
2 allHandlers.ONSTART()
3 while workList is not empty do
4 while workList is not empty do
5 ⟨p, newPTS⟩ ← worklist.POP()
6 PROCESSCALL(p, newPTS)
7 handlers.ONNEWPOINTSTOSET(p, newPTS)

8 handlers.ONPHASEFINISH()

9 handlers.ONFINISH()

10 PROCESSCALL (p, newPTS)
11 foreach callsite c: p.m(...) do
12 callee ← RESOLVECALL(c, newPTS)
13 ADDNEWMETHOD(callee)
14 handlers.ONNEWMETHOD(callee)

15 ADDPOINTSTO (p, newPTS)
16 workList ← workList ∪ ⟨p, newPTS⟩

Algorithm 2: PAC Handler for Android Feature X
1 Initialize resolvedInfos, androidVars

2 ONSTART ()
3 entrypoints ← components in AndroidManifest.xml
4 foreach entrypoint ∈ entrypoints do
5 ADDNEWMETHOD(entrypoint)

6 ONNEWMETHOD (callee)
7 foreach callsite c: r = p.m(a1...) in callee do
8 if c is related to Android Feature X then
9 androidVars ← androidVars ∪ {r, p, a1...}

10 ONNEWPOINTSTOSET (p, newPTS)
11 if p ∈ androidVars then
12 resolvedInfo, {⟨v1, newPTS′

1⟩...} ←
RESOLVEFEATUREX(p, newPTS)

13 foreach ⟨v, newPTS′⟩ ∈ {⟨v1, newPTS′
1⟩...} do

14 ADDPOINTSTO(v, newPTS′)

15 resolvedInfos ← resolvedInfos ∪ resolvedInfo

16 ONPHASEFINISH ()
17 {⟨v1,PTS′

1⟩...} ← DELAYEDRESOLVEFEATUREX()
18 foreach ⟨v, PTS′⟩ ∈ {⟨v1, PTS′

1⟩...} do
19 ADDPOINTSTO(v, PTS′)

20 ONFINISH ()
21 Report analysis result

If the popped variable p (and its points-to set newPTS) (line
5) serves as the receiver variable of a callsite c (line 11), the
target callee of c will be resolved according to the objects
pointed to by p, by calling RESOLVECALL() (line 12), and
then adds the callee to the set of methods to analyze (line
13). Then, the newly added method will be notified to all
handlers by calling ONNEWMETHOD() (line 14). Now, let us
look into ONNEWMETHOD, defined in line 6 of Algorithm 2.
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From the perspective of a handler for Android feature X (e.g.,
ICC, IntentInfo and others as in Figure 2), whenever a method
callee is added, it checks whether a callsite c within callee is
related to X and adds the involved variables of c into the set
of X-related variables androidVars (line 9), maintained as a
kind of global variable among all handlers (line 1).

Now we can move to line 7 of Algorithm 1, which calls
ONNEWPOINTSTOSET(p, newPTS) to notify all handlers that
the points-to set of variable p has possibly changed. All
feature handlers should be aware of such changes to per-
form any necessary actions affected by the new points-to
set, as defined in line 10 of Algorithm 2. Let us take an
example to illustrate this function. Assuming that feature X
is IntentInfo and p in line 11 refers to i1 in line 4 of
Figure 1, then p is an Android-related variable. So the method
RESOLVEFEATUREINTENTINFO() is called in line 12 of the
algorithm to handle the new Intent() statement in line
4 of Figure 1 and resolve the intent information. In this
case, ⟨o1,Activity2.class⟩ is returned as the resolved-
info in line 12 of the algorithm, indicating that intent o1’s
target component is Activity2, which can then be used
by other handlers. For another example, let X be SendICC,
corresponding to the case in line 11 of Figure 1. Here, p in
line 11 of the algorithm represents the hidden this variable
invoking getIntent(). The analysis then searches through
the previously resolved information resolvedinfos to identify
which intent object’s target component matches this’s type,
i.e., Activity2. As a result, intent o1 is identified, and
the points-to information for r1 in line 11 of Figure 1 is
added accordingly. This operation is reflected in line 12 of
the algorithm, where ⟨v1, newPTS′

1⟩ corresponds to ⟨r1, o1⟩.
Then, ⟨r1, o1⟩ is updated in the PAC engine by calling
ADDPOINTSTO() (see line 14 of Algorithm 2). As shown in
line 15 of Algorithm 1, ADDPOINTSTO adds ⟨r1, o1⟩ to the
worklist, which further triggers the while loop in line 4 to
continue processing.

The PAC engine incorporates an additional outer loop (lines
3 to 8) beyond the typical worklist algorithm loop (lines 4
to 7). This extra layer serves as an optimization for Android
analysis. When analyzing certain Android features like In-
tent extras and SharedPreferences, there are often numerous
store and load operations associated with key structures that
influence app behaviors. For instance, consider the methods
putExtra(key,val) and getStringExtra(key) in
Figure 1, which we abbreviate as put(k,v) and get(k).

As the worklist’s pop order is often unpredictable, we cannot
guarantee that all get(k) callsites are handled after their
corresponding put(k,v) callsites. Thus, for soundness, the
single-layer worklist algorithm needs to check all get(k) in-
stances whenever a put(k,v) callsite is processed, including
previously handled get(k) callsites that may not have found
a matching put(k,v) at the time. The complexity increases
with the presence of multiple points-to objects associated with
k and the receiver variables of put(k,v) and get(k).

The two-layer loop approach addresses this by delaying
the propagation of handling put(k,v) and the resolution

of r = get(k). Specifically, it defers the propagation of
objects from v to r until most put(k,v) callsites have been
resolved (but not yet propagated), before handling the majority
of get(k) callsites. This strategy offers two main advantages:
it removes the need to search for get(k) during each
put(k,v) callsite and enables consolidated propagation: for
any get(k), all corresponding put(k,v1), put(k,v2),
etc., can be identified, and the objects pointed to by v1,
v2, and others can be propagated to r in a single, efficient
operation, reducing the original separate propagation cost.

Now we can understand the two-layer loops of Algorithm 1
with the above example. After the inner loop from lines
4 to 7, a fixpoint is reached, meaning all statements have
been resolved and the points-to sets of variables have been
propagated and updated, except for any unresolved get(k)
callsites and resolved put(k,v) callsites that have not yet
been propagated. This means that by the end of the inner loop,
there is a high likelihood that all put(k,v) are resolved,
and all corresponding put(k,v) values are available when
handling a get(k). The ONPHASEFINISH() function, called
in line 8 of Algorithm 1 and defined in line 16 of Algorithm 2,
performs the delayed resolution of all get(k) callsites and
the propagation of all corresponding put(k,v) values by
invoking DELAYEDRESOLVEFEATUREX() (line 17). In our
example, this results in a set of pairs like ⟨r, o⟩ (where o
is pointed to by v) being added to the worklist by calling
ADDPOINTSTO() in line 19. Consequently, the worklist is not
empty, and the outer loop in line 3 of Algorithm 1 continues
to propagate the effects of updating ⟨r, o⟩ in the PAC engine,
potentially influencing other handlers.

We conducted experiments on a set of real-world Android
apps (collected in RQ2 of Section IV-C). This two-layer
worklist optimization shows negligible advantage for simple
apps. However, it notably accelerates the original one-layer
worklist algorithm for 13 complex apps (e.g., those taking over
300 seconds), achieving an average speedup of 3.2X, with the
largest average speedup for three apps being 8.3X.

IV. EVALUATION

In this section, we investigate the following research ques-
tions to evaluate PacDroid’s effectiveness.

• RQ1: How does PacDroid perform compared to other
state-of-the-art frameworks in terms of the trade-off be-
tween soundness and precision?

• RQ2: Is PacDroid robust (analysis crash rate) and fast
(analysis speed) in analyzing real-world Android apps?

• RQ3: Can PacDroid successfully detect real vulnerabili-
ties in real-world Android apps?

A. Experimental Settings

All experiments were conducted on an Intel(R) Xeon(R)
E2488 3.2GHz machine with 20GB of memory.

a) State-of-the-art Frameworks: As PacDroid is a gen-
eral static analysis framework that offers fundamental facilities
for building taint analysis for Android apps, we consider well-
recognized comparative frameworks, including FlowDroid,
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TABLE I
SUMMARY OF BENCHMARK RESULTS. THESE BENCHMARKS CONSIST OF DIFFERENT SUITES, EACH CONTAINING MULTIPLE TEST APPS, AND EACH TEST
APP MAY INCLUDE ZERO OR MORE MALICIOUS FLOWS. WE CATEGORIZE THE RESULTS AS FOLLOWS: A CORRECTLY IDENTIFIED MALICIOUS FLOW IS A
TRUE POSITIVE (TP), AN INCORRECTLY IDENTIFIED FLOW IS A FALSE POSITIVE (FP), AND A MISSED MALICIOUS FLOW IS A FALSE NEGATIVE (FN).

Suite Malicious
Flows

FlowIccTA P/Taint Amandroid PacDroid

TP FP FN TP FP FN TP FP FN TP FP FN

Alias 1 1 1 0 1 3 0 1 2 0 1 3 0
AndroidSpecific 11 9 0 2 10 1 1 6 0 5 9 0 2
ArraysAndLists 4 4 4 0 4 4 0 1 4 3 4 4 0

Callbacks 18 18 2 0 9 2 9 8 9 10 18 4 0
Emulator 18 16 0 2 16 0 2 16 0 2 16 0 2

FieldAndObject 3 2 0 1 3 2 0 2 0 1 3 2 0
GeneralJava 22 15 4 7 20 6 2 11 3 11 21 4 1

IAC 19 6 0 13 3 0 16 5 2 14 11 0 8
ICC 41 22 2 19 28 14 13 35 11 6 40 1 1

Lifecycle 24 16 0 8 21 0 3 14 0 10 24 0 0
Reflection 9 8 0 1 3 0 6 1 0 8 9 0 0
Threading 6 3 0 3 4 0 2 4 0 2 6 0 0

UnreachableCode 0 0 3 0 0 4 0 0 4 0 0 4 0
UBCBench 24 17 1 7 13 5 11 11 6 13 23 4 1

Sum, Recall and Precision

Sum 200 137 17 63 135 41 65 115 41 85 185 26 15

Recall r = TP/(TP + FN) 69% 68% 58% 93%
Precision p = TP/(TP + FP) 89% 77% 74% 88%

F-measure: 2rp/(r + p) 77% 72% 65% 90%

IccTA, P/Taint, and Amandroid. DroidSafe is excluded as it
does not support Android versions higher than 19 (the latest
version is 34), and it fails to analyze all 24 programs in ICC-
Bench, and has thus also been omitted from works [19]. For all
the compared frameworks, we use their latest stable versions.

b) Benchmarks: To thoroughly evaluate the capabilities
of various frameworks, we consider DroidBench [20] and ICC-
Bench [18], commonly used in existing literature [4]–[8]. We
use their latest versions to benefit from the additional An-
droid features they support. Besides, we include the recently
developed UBCBench [21] (2021 version), which covers a
broader range of usage scenarios for Android features. We
also incorporate eight cases involving ICC features or their
practically adopted combinations that may lead to leaks, which
are missed by the above benchmarks. Note that thirty out of
230 malicious flows, involving hard features such as dynamic
class loading, which no frameworks can handle, or aspects
like implicit flows that most frameworks do not address due
to their focus on explicit flow analysis, have been excluded.

B. RQ1: Soundness and Precision Trade-off

The F-measure, calculated as the harmonic mean of recall
and precision, effectively balances soundness and precision
into a single value. It is commonly used as the primary metric
to evaluate the soundness-precision trade-off in the literature
on static analysis for Android [4], [5], [7]. Table I details
the results of different frameworks on the benchmarks given
in Section IV-A. Overall, PacDroid achieves an F-measure
of 90%, surpassing all other frameworks, with the next best,
FlowIccTA, at 77%. Below, we delve into soundness and pre-
cision, with soundness validated through a recall experiment.

a) Soundness (Recall): A recall experiment measures the
proportion of real malicious flows detected by a static anal-
ysis among all real flows: higher recall values signify better

soundness. As shown in Table I, the recall of PacDroid reaches
93%, significantly outperforming all other frameworks, with
FlowIccTA at 69%, P/Taint at 68%, and Amandroid at 58%.

Apart from the enhanced handling of certain Android fea-
tures, the recall advantage of PacDroid primarily stems from
its PAC design. As explained in Section III, PAC allows the
analysis results of one feature to influence the resolution of an-
other. For example, in an ICC case from our benchmark, com-
munication among activity and service components involves
more complex features, including messages, messengers, and
intents, than those depicted in Figure 1. As PacDroid supports
message analysis, messenger analysis, and intent analysis, and
incorporates their results into the ICC analysis via PAC, it is
able to detect taint flows through such complex ICC scenarios,
where other frameworks fail. A similar explanation applies
to the SharedPreferences example from the Lifecycle suite in
our benchmark. SharedPreferences is an important Android
structure that involves two nested maps, with the outer map’s
value correlated with the inner map. Building the flow for
SharedPreferences requires modeling both maps and tracking
the value dependencies between them. Among all evaluated
frameworks, only PacDroid can build such flow in analysis as
PacDroid’s PAC design allows the effects of all feature analy-
ses (including map modeling, which involves string analysis)
to be automatically propagated via pointer analysis, enabling
it to identify taint flows through SharedPreferences effectively.

b) Precision: Soundness and precision often come at the
cost of each other, with more conservative handling improving
soundness but potentially reducing precision. We believe that
PacDroid has made a better sweet spot between these two
aspects for Android analysis, as evidenced by its highest F-
measure of 90%, compared to the next best FlowIccTA at 77%.
In terms of precision alone, PacDroid achieves a precision
of 88%, which is slightly lower than FlowIccTA’s 89%, but
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TABLE II
RESULTS OF HANDLING CERTAIN CHALLENGING FEATURES

Category Flows
FlowIccTA P/Taint Amandroid PacDroid

TP FP FN TP FP FN TP FP FN TP FP FN

Implicit 14 10 0 4 13 3 1 13 1 1 13 0 1
Hybrid 5 1 0 4 2 1 3 5 5 0 5 0 0
Sharepref 6 1 0 5 1 0 5 1 0 5 6 0 0

RPC 7 0 0 7 0 0 7 5 2 2 7 0 0

significantly higher than P/Taint’s 77% and Amandroid’s 74%.
The main reason why FlowIccTA is slightly more precise than
PacDroid is that FlowIccTA is based on IFDS [25], [26],
making it inherently context- and flow-sensitive, and unable
to provide an insensitivity option. In contrast, PacDroid is
context-sensitive and partially flow-sensitive (utilizing flow-
insensitivity with SSA form to enhance its flow sensitivity).
Since PacDroid is based on pointer analysis, it can choose con-
text insensitivity as its default option, balancing efficiency with
its ability to achieve precision even in a context-insensitive
mode. For a fair evaluation, we ran PacDroid with its default
context-insensitive option throughout the evaluation. However,
it is important to note that PacDroid’s precision can be directly
improved to surpass FlowIccTA simply by selecting any
context-sensitivity option available in Tai-e, without requiring
any changes to the approach. Despite this, we must acknowl-
edge that PacDroid cannot achieve the necessary precision for
few cases where full flow-sensitivity is needed.

To validate PacDroid’s ability to handle challenging features
compared to other frameworks, we conduct an empirical study,
and the results are shown in Table II. The study includes
four categories: Implicit, Hybrid, Sharepref, and RPC, all of
which involve implicit data flows, in the sense that Implicit and
Hybrid include various complex cases involving implicit in-
tents/ICCs, while the other categories address cases that cannot
be resolved directly without first handling other features. For
example, Hybrid includes cases that require resolving explicit,
implicit, and replied intents together to identify the final ICC
target. RPC contains cases dealing with remote calls to Service
components, which require resolving intents first, followed by
the IBinder features. In summary, PacDroid outperforms other
frameworks in soundness, with a recall of 97%, compared to
FlowIccTA’s 38%, P/Taint’s 50% and Amandroid’s 75%. In
addition, PacDroid exhibits excellent precision as FlowIccTA
in this experiment, consistent to the precision results of Table I.

C. RQ2: Analysis Robustness and Speed

The benchmarks in RQ1 cover a wide range of diverse usage
cases for Android apps, examining each framework’s basic
capabilities in handling Android features. However, these
benchmarks are typically simple, allowing all frameworks to
analyze them without crashes, and most complete the analysis
within seconds. To better assess the robustness and analysis
speed, we randomly selected 100 real-world apps from Andro-
zoo [27], [28], dated between 2021 and 2023 (with an average
about 1 million bytecode instructions). Each framework was
run under its default settings, with three runs conducted to
calculate average analysis time. The analysis time was capped

TABLE III
AVERAGE ANALYSIS TIME AND RATE OF CRASH OF EACH FRAMEWORK.

Tool
Average analysis time(s) Rate of

CrashNon-Intersect Intersect

FlowIccTA
IC3 116.47 N/A 90%

FlowIccTA 263.46 252.37 27%

P/Taint 4243.72 4127.89 8%

Amandroid 651.09 458.18 6%

PacDroid 147.37 102.39 4%

at 90 minutes for all frameworks. Only P/Taint exceeded this
limit for half of the apps, with these instances recorded as 90
minutes. Below, we discuss the analysis robustness and speed
in detail, as summarized in Table III.

a) Analysis Robustness: As a practical tool, the ability
to analyze a real-world app without crashes is a basic re-
quirement, indicating the tool’s robustness. Since FlowIccTA
requires the use of the separate tool IC3 for ICC analysis, its
evaluation consists of two parts (i.e., IC3 and FlowIccTA). In
our evaluation, PacDroid demonstrated the lowest crash rate
at 4%, followed by Amandroid and P/Taint with crash rates
of 6% and 8%, respectively. FlowIccTA and IC3 exhibited
significantly higher crash rates of 27% and 90%. The crashes
in PacDroid were primarily due to issues in parsing the APKs,
specifically during the dex-to-IR transfer process, as well as a
memory overflow in one program. Amandroid’s crashes also
stemmed from APK parsing issues, along with exceptions
such as null pointer or array out-of-bounds errors and memory
overflow. P/Taint’s crashes occurred when generating Datalog
fact files. Due to lack of maintenance, the newest IC3 still
relies on an outdated version of FlowDroid to analyze strings
inside Android apps, and replacing it with the new version of
FlowDroid causes IC3 to fail to compile. Because FlowIccTA
relies on IC3 to resolve intents in advance, its reliability
heavily depends on the reliability of this separate tool, which is
not ideal in design. FlowIccTA ’s crashes were mainly caused
by memory overflow and many null pointer exceptions that
occurred while building the call graph in its callback analysis.

b) Analysis Speed: Different frameworks may crash on
different real-world apps. To fairly examine the efficiency of
each framework, we had them analyze the same set of apps
that all frameworks could analyze without crashes and within
the time limit, referred to as the ”Intersect” group. The ”Non-
Intersect” group includes apps that each framework could
analyze successfully within the time limit. Since IC3 crashed
in 90% of the programs, we excluded it when collecting the
Intersect group, resulting in 63 out of the 100 apps being
included. Table III shows the average analysis times for these
two groups. PacDroid demonstrated superior performance in
both the Non-Intersect and Intersect groups. In the Non-
Intersect group, PacDroid is about 2.6x faster than FlowIccTA,
4.4x faster than Amandroid, and 28.8x faster than P/Taint.
In the Intersect group, PacDroid is about 2.5x faster than
FlowIccTA, 4.5x faster than Amandroid, and 40.3x faster than
P/Taint. It is challenging to pinpoint all causes of inefficiency,
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but we can highlight some factors likely to slow down an
analysis. For example, FlowIccTA reanalyzes the program
after each iteration of detecting new callbacks to extend the
call graph until no new edges are added, resulting in redundant
computations, which are time-consuming. Amandroid, on the
other hand, constructs multiple graph structures (e.g., ICFG,
DFG, DDG, Summary Table) and employs algorithms based
on them, adding complexity that can increase analysis time.
P/Taint, built on Datalog, has to generate a large number of
Datalog facts to execute, with its efficiency heavily dependent
on the opaque Datalog engine, which may make it much
slower than other frameworks.

To further evaluate the scalability stress of PacDroid con-
cerning app size, we analyzed an additional 30 large and
complex apps from Androzoo. Each app exceeds 1 million
bytecode instructions, averaging 3.36 million, making them
significantly larger than the previous dataset. Amandroid failed
on 15 apps, with 12 cases attributed to timeouts, resulting
in a scalability stress of 3.9 million bytecode instructions.
Scalability stress is calculated as the average size of the apps
a framework cannot analyze scalably. FlowIccTA failed on 12
apps, all due to memory shortages, with a scalability stress
of 1.7 million. However, these results should be interpreted
with caution, as FlowIccTA often yields unreliable outcomes
in this experiment by resolving very few call graph edges
in many instances. For example, for three apps in the 5-
6 million range, it completed analyses in just 20 seconds
but resolved only around 690 call graph edges on average.
Notably, PacDroid does not exhibit these robustness issues,
and only failed to analyze 9 apps, mainly due to memory
limitations, with a scalability stress of 6.1 million. This larger
app set exceeds P/Taint’s scalability capabilities, leading to
failures in 27 applications, mostly due to timeouts, so we do
not compute its scalability stress. While PacDroid shows better
efficiency and robustness than other frameworks, there is still
room for scalability improvement. Considerable work has been
done to optimize analysis efficiency [29]–[37], such as using
heap snapshots to enhance scalability [30], [32]. We plan to
explore further improvements in this area going forward.

D. RQ3: Real-World Vulnerability Detection

Let’s evaluate the ability of each framework to detect real
vulnerabilities in real-world Android apps. Fortunately, the
recent works TaintBench [19] and UBCBench [21] provide
a collection of various real vulnerabilities found in real-world
apps. We consider all 39 apps from TaintBench and 6 out
of 25 apps from UBCBench that involve privacy information
leakage. The remaining 19 apps in UBCBench are excluded
because they focus on detecting login encryption scenarios
and do not provide precise ground truth through taint flows.
In total, we have 250 labeled real taint flows across 45 real-
world apps. Note that this does not necessarily mean there are
no other real taint flows in those apps; the labeled ones are
simply those verified by the studies [19], [21]. Consequently,
these labeled taint flows cannot serve as a definitive metric
for assessing the precision of different frameworks in real-

world scenarios. Therefore, in this section, we focus solely
on soundness, specifically whether the frameworks can detect
these real taint flows, which is the most critical aspect of taint
analysis. As for frameworks, we observed that the number of
taint flows reported by Amandroid varied across different runs
on the same machine, with the same app, and under the same
configuration settings. This inconsistency has also been noted
by other works [21]. Thus, to maintain fairness despite this
bug in Amandroid, we consider the highest number of taint
flows reported by Amandroid from three runs for each app.

The results of PacDroid are highly promising, as detailed
in Table IV, where it successfully detects 187 out of 250 real
taint flows. This performance is significantly better than that
of Amandroid, which detects 67 flows, FlowIccTA with 50
flows, and P/Taint with 50 flows, showcasing PacDroid’s high
potential in identifying real-world vulnerabilities. Notably,
PacDroid detects 77 taint flows that all other frameworks miss.
Of the 63 taint flows that PacDroid fails to detect, only 14
are detected by other frameworks, while the remaining 49 go
undetected by any framework. Given the complexity and time-
consuming nature of enumerating reasons for a framework’s
success or failure in detecting real vulnerabilities in real-world
apps, we discuss below some representative scenarios where
PacDroid succeeds while others fail, and where PacDroid fails
but other frameworks partially detect.

For the former, two factors may contribute to PacDroid’s
better performance. First, PacDroid’s PAC approach uniformly
handles various Android features and their complex combina-
tions, enhanced by the propagation of pointer analysis. For
instance, the program chulia involves four taint flows with
complex feature combinations, including lifecycle, ICC, in-
tent extras, collections, appendToString, and others. PacDroid
effectively manages these combinations and identifies all taint
flows in this scenario, whereas other frameworks fail to detect
them all. Second, PacDroid supports some more Android fea-
tures than others. For example, the taint flow in program xbot
involves the WebView feature of Android, which PacDroid
partially supports while other frameworks do not.

Before discussing why PacDroid fails to detect some taint
flows that other frameworks can, we first provide some back-
ground. Each framework, including PacDroid, models impor-
tant methods in the Java JDK and Android standard library
(android.jar) to enhance analysis effectiveness. However, in
addition to the standard library, frameworks like Amandroid
handle other library methods conservatively. For instance, they
assume the values of a specified library method’s parameters
will flow to all its fields, such as f, and further to the fields of
f. Similarly, FlowIccTA adopts conservative handling in the
opposite direction. For example, for a store operation o.f =
g, if g is tainted, not only will o.f be tainted, but o will also
be tainted, with the nesting level of flow expansion limited
to a predefined number, such as five. In contrast, PacDroid
does not apply such expansions to maintain precision, relying
instead on real flow based on statements’ or APIs’ semantics
to propagate values. This approach, while precise, may cause
PacDroid to miss some taint flows. For example, in the
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TABLE IV
NUMBER OF REAL TAINT FLOWS DETECTED BY EACH FRAMEWORK IN
REAL-WORLD ANDROID APPS. CRASH: ANALYSIS TERMINATED WITH

EXCEPTIONS. TIMEOUT: ANALYSIS DIDN’T FINISH WITHIN 1.5 HOURS.

App Name Exp.Flows FlowIccTA P/Taint Amandroid PacDroid

flashlight 7 Crash Timeout 1 7
phonemonitor 12 4 8 12 12
win7imulator 3 Crash 3 1 3
win7launcher 11 0 8 3 11
flappybird 7 Crash 6 1 7

hzpermispro 7 Crash 6 1 7
backflash 13 13 0 0 13

beita 3 Crash 0 0 1
cajino 12 8 2 9 8
chat 12 9 3 1 10

chulia 4 0 0 1 4
death 1 Crash 1 0 1

dsencrypt 1 0 0 0 1
exprespam 1 0 0 1 1

fakeappstore 3 0 0 0 3
fakebank 5 0 0 1 3
fakedaum 2 0 0 1 1
fakemart 2 0 0 1 0
fakeplay 2 0 0 0 0

faketaobao 4 0 0 4 4
godwon 6 0 0 0 0

hummingbad 2 0 0 0 0
jollyserv 1 1 0 0 0
overlay 4 Crash 0 0 1

overlay2 7 0 0 0 5
phospy 2 2 1 0 2
proxy 17 6 2 1 9
remote 17 Crash 0 0 15
repane 1 0 0 0 0
roidsec 6 0 0 6 4

samsapo 4 0 0 0 2
save 25 Crash 5 11 25

scipiex 3 0 0 0 1
slocker 5 0 0 1 5

sms google 4 0 0 1 2
sms send 6 3 2 2 6
smssend 5 1 2 2 2

smssilience 2 Crash 0 0 0
smsstealer 5 0 0 0 3

stels 3 1 1 0 2
tetus 2 2 0 0 2
the 1 0 0 0 0

threatjapan 2 0 0 2 1
vibleaker 4 Crash 0 2 0

xbot 3 0 0 1 3

Sum 250 50/250 50/250 67/250 187/250

program cajino, FlowIccTA and Amandroid detect 2 out of
4 taint flows each, sinking to calls of putObject in the
com.baidu package, while PacDroid misses these flows due to
its lack of conservative modeling.

Note that FlowIccTA can resolve intents on its own, though
it can be further enhanced by IC3. Due to IC3’s exceptionally
high crash rate (shown in Table III), we ran FlowIccTA
independently to analyze real-world apps. However, as shown
in Table IV, FlowIccTA still exhibited a relatively high crash
rate (24%) compared to other frameworks, consistent with the
results in Table III. Additionally, as previously mentioned,
Amandroid reports different results for the same real-world
app under identical settings in different runs. These phenom-
ena underscore the need for reliable research tools in practice.

E. Discussion

Based on the experimental results, PacDroid exhibits no-
table advantages over established and widely used frameworks,

including FlowIccTA, P/Taint and Amandroid, both in exten-
sive benchmarks and real-world applications. This highlights
PacDroid’s potential as a promising research tool with capa-
bilities for identifying real taint flows in practical scenarios.
Nevertheless, as a framework aimed at more comprehensive
Android application analyses, PacDroid still has room for
further improvement.

Firstly, there are challenging or emerging Android features,
such as dynamic class loading, Jetpack Compose [38], and
WebView [39], which are either not yet supported or inade-
quately addressed by PacDroid. Fortunately, PacDroid’s PAC
method facilitates the flexible addition or enhancement of these
features through plugin handlers, allowing for extensibility.

Secondly, recent research suggests that integrating large
language models (LLMs) could enhance security issue detec-
tion [40]. Given that PacDroid’s PAC approach organizes its
handling of Android features in a modular fashion, certain
features can be further decomposed or recombined into new
handlers. This approach may facilitate fine-tuning interactions
with LLMs to possibly generate more effective prompts.

Lastly, PacDroid is inherently a versatile static analysis
framework. Its PAC approach enables taint analysis, imple-
mented as a handler, to collaborate with Android feature
handlers and pointer analysis. This design not only supports
the current security analysis but also paves the way for future
extensions. By developing new PAC handlers, PacDroid can
be adapted to perform other client analyses of Android apps,
such as bug detection [41] and program comprehension [42].

V. RELATED WORK

We review related works in the following three categories.
a) Static Analysis Frameworks for Android: We have

discussed various static analysis frameworks for Android
throughout the paper, including FlowDroid, IccTA, P/Taint,
Amandroid, and DroidSafe. Below, we clarify the key dif-
ferences between frameworks that use pointer analysis, i.e.,
P/Taint and DroidSafe, to underscore PacDroid’s advantages.

Unlike PacDroid, which uniformly resolves all Android fea-
tures through pointer analysis and successfully demonstrates
its feasibility, P/Taint either omits handling certain Android
features (e.g., SharedPreferences) or uses non-pointer-analysis
approaches to resolve them (e.g., conservative ICC resolution),
resulting in worse soundness and precision than PacDroid.
Moreover, as P/Taint is declarative and built using Datalog,
optimizing feature analysis in P/Taint is hard because it utilizes
an opaque Datalog engine to interpret rules, lacking the
capability to manipulate specific data structures and execution
strategies [43]. This makes it significant slower than PacDroid.

As for DroidSafe, it only partially employs pointer anal-
ysis for feature handling. Like FlowIccTA and Amandroid,
DroidSafe relies on a separate tool for extracting strings before
resolving critical Android features such as intents and ICC.
As illustrated in Sections II and IV, this design not only
incurs extra time but also ties the framework’s reliability to
these pre-analysis tools. Moreover, DroidSafe lacks PacDroid’s
capability to leverage results from one feature analysis to
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enhance another for resolving more program behaviors, as
DroidSafe does not handle all features under the same on-the-
fly pointer analysis algorithm as PacDroid. Additionally, unlike
PacDroid, which uses pointer analysis for modeling critical
library methods, DroidSafe simplifies these methods by manu-
ally rewriting their internal code. Finally, none of these frame-
works, like PacDroid, presents the PAC approach to showcase
how to imperatively and cohesively utilize pointer analysis to
manage various Android features uniformly, achieving both
extensibility and performance.

CHEX [9] employs an app-splitting approach to model the
execution of multiple entry points, facilitating global data-flow
analysis. But it focuses solely on the analysis of Android entry
points and does not support more complex Android features.

HornDroid [44] utilizes Horn clause-based static analysis
for Android applications, but it complicates the process by
needing security attributes to be converted into Horn clauses.
The framework only addresses apps with activities, and han-
dles ICC solely for explicit intents.

Some frameworks, despite having their own methods for
analyzing Android, still rely on more fundamental frame-
works for tasks like identifying entry points, building con-
trol flow graphs and call graphs, and conducting data flow
analysis [45]–[49]. For example, DidFail [45] depends on
Epicc [50] for resolving intent information and on FlowDroid
for data flow analysis. R-droid [48] employs a slicing-based
analysis to generate data-dependent statements for arbitrary
points of interest within an Android app. It follows FlowDroid
and Amandroid to analyze lifecycle and utilizes DroidSafe’s
lightweight framework model to analyze apps.

b) Static Analysis for Specific Android Features: For in-
tent analysis, ICCBot [51] models UI relationships from frag-
ments to activities during the resolution process. ARIA [52]
uses a two-pass method: first, it applies data flow analysis
to resolve intents and labels those that cannot be resolved
initially. It then performs a new analysis to resolve ICC,
leveraging its results to resolve previously unresolved intents.
In contrast, PacDroid integrates features such as intents, ICC,
fragments, and more, resolving them on the fly with pointer
analysis in a single analysis, thus deriving enhanced intent in-
formation from the aggregated results of all analyzed features.
RAICC [53] analyzes atypical intents (e.g., PendingIntent) by
parsing them into standard ICC methods (e.g., startActivity)
through instrumentation, resulting in a new APK that serves
as a preprocessor for other static analyses. PacDroid can also
utilize the generated APK to handle atypical intents.

Several studies focus on inter-app communication (IAC),
extending ICC analysis across multiple apps [10], [11], [13],
[54]. For instance, IAFDroid [13] identifies IAC-related en-
try and exit points within an app and then performs taint
analysis between apps using FlowDroid. No general frame-
works, including FlowIccTA, P/Taint, Amandroid, DroidSafe
and PacDroid, offer comprehensive IAC analysis. To address
this, PacDroid currently employs ApkCombiner [55] to merge
multiple apps into a single app for IAC analysis.

c) Static Analysis for Android Security: Numerous stud-
ies employ static analysis to identify and address various se-
curity issues, including intent-based attack surfaces [12], [54],
permission problems [56]–[58], performance concerns [59],
[60], and others [61]–[67]. These studies typically use or
extend existing general Android analysis frameworks (e.g.,
FlowDroid) to better tackle security challenges. For example,
SEALANT [12] addresses issues like intent spoofing and
unauthorized intent reception, helping users block potential
attacks by automatically identifying vulnerable ICC paths be-
tween applications. Permission Tracer/Tainter [57] focuses on
the opacity of custom permission management, which can pose
privacy and security risks. IMGDroid [60] analyzes improper
practices in image loading and processing, considering both
performance and quality aspects. In the future, PacDroid can
be extended by conveniently adding handlers to develop and
enhance research on these security issues.

VI. CONCLUSIONS

We present PacDroid, a new static analysis framework for
vulnerability detection in Android apps. Its core novelty lies
in adopting a pointer-analysis-centric approach, a simple yet
effective method for cohesively handling various Android
features in a unified way. Extensive experiments demonstrate
that PacDroid not only achieves a superior trade-off between
soundness and precision (F-measure) compared to state-of-
the-art frameworks, but also surpasses them in analysis speed
and robustness—achieving all of these simultaneously is a
big challenge for a fundamental static analysis framework.
Moreover, PacDroid successfully detects dozens of real vul-
nerability flows in real-world Android apps, where all other
frameworks fall, indicating its potential for practical use.

Although our primary focus in this paper is on security,
PacDroid actually offers a set of fundamental facilities such as
alias and points-to information for every variable and the call
graph of an Android app, which serve as the basis for various
analysis clients. We hope these capabilities will help establish
PacDroid as a foundational framework for developing a range
of applications, such as bug detection, program understanding,
and optimization tools for Android in the future.
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[43] D. Helm, F. Kübler, M. Reif, M. Eichberg, and M. Mezini, “Modular
collaborative program analysis in opal,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2020, pp. 184–
196.

[44] S. Calzavara, I. Grishchenko, and M. Maffei, “Horndroid: Practical and
sound static analysis of android applications by smt solving,” in 2016
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE,
2016, pp. 47–62.

[45] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android taint
flow analysis for app sets,” in Proceedings of the 3rd ACM SIGPLAN
International Workshop on the State of the Art in Java Program Analysis,
2014, pp. 1–6.

[46] J. Zhang, C. Tian, and Z. Duan, “An efficient approach for taint analysis
of android applications,” Computers & Security, vol. 104, p. 102161,
2021.

[47] A. Tiwari, S. Groß, and C. Hammer, “Iifa: modular inter-app intent
information flow analysis of android applications,” in Security and
Privacy in Communication Networks: 15th EAI International Confer-
ence, SecureComm 2019, Orlando, FL, USA, October 23–25, 2019,
Proceedings, Part II 15. Springer, 2019, pp. 335–349.

[48] M. Backes, S. Bugiel, E. Derr, S. Gerling, and C. Hammer, “R-droid:
Leveraging android app analysis with static slice optimization,” in
Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, 2016, pp. 129–140.

[49] L. Luo, G. Piskachev, R. Krishnamurthy, J. Dolby, E. Bodden, and
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