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Reflection has always been an obstacle both for sound and
for effective under-approximate pointer analysis for Java applications. In
pointer analysis tools, reflection is either ignored or handled partially,
resulting in missed, important behaviors. In this paper, we present our
findings on reflection usage in Java benchmarks and applications. Guided
by these findings, we introduce a static reflection analysis, called Elf,
by exploiting a self-inferencing property inherent in many reflective calls.
Given a reflective call, the basic idea behind Elf is to automatically in-
fer its targets (methods or fields) based on the dynamic types of the
arguments of its target calls and the downcasts (if any) on their re-
turned values, if its targets cannot be already obtained from the Class,
Method or Field objects on which the reflective call is made. We evaluate
Elf against Doop’s state-of-the-art reflection analysis performed in the
same context-sensitive Andersen’s pointer analysis using all 11 DaCapo
benchmarks and two applications. Elf can make a disciplined tradeoff
among soundness, precision and scalability while also discovering usually
more reflective targets. Elf is useful for any pointer analysis, particularly
under-approximate techniques deployed for such clients as bug detection,
program understanding and speculative compiler optimization.

1 Introduction

Pointer analysis is an important enabling technology since it can improve the
precision and performance of many program analyses. However, reflection poses a
major obstacle to pointer analysis. Despite the large literature on whole-program
[1, 6, 7, 11, 15, 21] and demand-driven [10, 13, 14, 17] pointer analysis for Java,
almost all the analyses reported are unsound in the presence of reflection since it
is either ignored or handled partially. As a result, under-approximate or unsound
techniques represent an attractive alternative in cases where sound analysis is
not required [18] (e.g., for supporting bug detection, program understanding
and speculative compiler optimization). Even so, ignoring reflection often leads
to missed, important behaviors [18]. This explains why modern pointer analysis
tools for Java [4, 19–21] provide some forms of reflection handling.

As reflection is increasingly used in Java programs, the cost of imprecise re-
flection handling has increased dramatically. To improve the effectiveness of a
pointer analysis tool for Java, automatic techniques for handling reflection by
balancing soundness, precision and scalability are needed. Despite its impor-
tance, this problem has received little attention. Some solutions include (1) dy-



1 A a = new A();
2 String cName, mName, fName = ...;
3 Class clz = Class.forName(cName);
4 Object obj = clz.newInstance();
5 B b = (B)obj;
6 Method mtd = clz.getDeclaredMethod(mName,{A.class});
7 Object l = mtd.invoke(b, {a});
8 Field fld = clz.getField(fName);
9 X r = (X)fld.get(a);

10 fld.set(NULL, a);

Fig. 1. An example of reflection usage in Java.

namic analysis [2] for recording reflective (call) targets discovered during input-
dependent program runs and passing these annotations to a subsequent pointer
analysis, (2) online analysis [5] for discovering reflective targets at run time and
performing a pointer analysis to support JIT optimizations, and (3) static anal-
ysis [4, 8, 20] for resolving reflective targets together with a pointer analysis.

In this paper, we present a new static reflection analysis, called Elf, which is
integrated into Doop, a state-of-the-art Datalog-based pointer analysis tool [4]
for analyzing Java programs. Elf draws its inspirations from the two earlier re-
flection analyses [4, 8] and benefits greatly from the open-source reflection anal-
ysis implemented in Doop [4]. Livshits et al. [8] suggested resolving reflective
calls by tracking the flow of class/method/field names in the program. In the
code from Figure 1, this involves tracking the flow of cName into clz in line
3, mName into mtd in line 6, and fName into fld in line 8, if cName, mName and
fName are string constants. If cName is, say, read from a configuration file, they
suggested narrowing the types of reflectively-created objects, e.g., obj in line 4,
optimistically by using the downcast (B) available in line 5. Later, Doop [4]
handles reflection analogously, but context-sensitively, to obtain the full benefit
from the mutual increase in precision of both component analyses.

However, Elf goes beyond [4, 8] by taking advantage of a self-inferencing
property inherent in reflective code to strike a disciplined tradeoff among sound-
ness, precision and scalability. Our key observation (made from a reflection-usage
study described in Section 2) is that many reflective calls are self-inferenceable.
Consider r = (X)fld.get(a) in Figure 1. Its target fields accessed can often
be approximated based on the dynamic types (i.e., A) of argument a and the
downcast that post-dominates its return values, if fld represents a statically
unknown field named fName. In this case, the reflective call is resolved to all
possible field reads r = a.f. Here, f is a field of type T (where T is X or a
supertype or subtype of X), declared in a class C (where C is A or a supertype of
A). To the best of our knowledge, Elf is the first static reflection analysis that
exploits such self-inferencing property to resolve reflective calls.

Due to the intricacies and complexities of the Java reflection API, we will
postpone a detailed comparison between Elf and the two state-of-the-art reflec-
tion analyses [4, 8] later in Section 3 after we have introduced Elf in full.

In summary, this paper makes the following main contributions:



– We report findings on a reflection-usage study using 14 representative Java
benchmarks and applications (Section 2). We expect these findings to be
useful in guiding the design and implementation of reflection analysis.

– We introduce a static reflection analysis, Elf, to improve the effectiveness of
pointer analysis tools for Java (Section 3). Elf adopts a new self-inferencing
mechanism for reflection resolution and handles a significant part of the Java
reflection API that was previously ignored or handled partially.

– We formulate Elf in Datalog consisting of 207 rules, covering the majority
of reflection methods frequently used in Java programs (Section 4).

– We have evaluated Elf against a state-of-the-art reflection analysis in Doop
(version r160113) under the same context-sensitive Andersen’s pointer anal-
ysis framework, using all 11 DaCapo benchmarks and two Java applications,
Eclipse4 and Javac (Section 5). Our results show that Elf can make a dis-
ciplined tradeoff among soundness, precision and scalability while resolving
usually more reflective call targets than Doop.

2 Understanding Reflection Usage

Section 2.1 provides a brief introduction to the Java reflection API. Section 2.2
reports our findings on reflection usage in Java benchmarks and applications.

2.1 Background

The Java reflection API provides metaobjects to allow programs to examine
themselves and make changes to their structure and behavior at run time. In
Figure 1, the metaobjects clz, mtd and fld are instances of the metaobject
classes Class, Method and Field, respectively. Constructor can be seen as
Method except that the method name “<init>” is implicit. Class provides ac-
cessor methods such as getDeclaredMethod() in line 6 and getField in line 8
to allow the other metaobjects (e.g., of Method and Field) related to a Class
object to be introspected. With dynamic invocation, a Method object can be
commanded to invoke the method that it represents (line 7) and a Field object
can be commanded to access the field that it represents (lines 9 and 10).

As far as pointer analysis is concerned, we can divide the pointer-affecting
methods in the Java reflection API into three categories: (1) entry methods,
e.g., forName() in line 3, for creating Class objects, (2) member-introspecting
methods, e.g., getDeclaredMethod() in line 6 and getField() in line 8, for
retrieving Method (Constructor) and Field objects from a Class object, and (3)
side-effect methods, e.g., newInstance(), invoke(), get() and set() in lines
4, 7, 9 and 10, that affect the pointer information in the program reflectively.

Class provides a number of accessor methods for introspecting methods,
constructors and fields in a target class. Unlike [4, 8], Elf is the first to handle
all such accessor methods in reflection analysis. Let us recall the four on return-
ing Method objects. getDeclaredMethod(String, Class[]) returns a Method
object that represents a declared method of the target Class object with the
name (formal parameter types) specified by the first (second) parameter (line



6 in Figure 1). getMethod(String, Class[]) is similar except that the re-
turned Method object is public (either declared or inherited). If the target Class
does not have a matching method, then its superclasses are searched first recur-
sively (bottom-up) before its interfaces (implemented). getDeclaredMethods()
returns an array of Method objects representing all the methods declared in the
target Class object. getMethods() is similar except that all the public methods
(either declared or inherited) in the target Class object are returned. Given a
Method object mtd, its target method can be called as shown in line 7 in Figure 1.

2.2 Empirical Study

The Java reflection API is rich and complex in details. We conduct an empirical
study to understand reflection usage in practice in order to guide the design and
implementation of a sophisticated reflection analysis.

We select 14 representative Java programs, including nine DaCapo bench-
marks (2006-10-MR2), three latest versions of popular desktop applications,
javac-1.7.0, jEdit-5.1.0 and Eclipse-4.2.2 (denoted Eclipse4), and two
latest versions of popular server applications, Jetty-9.0.5 and Tomcat-7.0.42.
Note that DaCapo consists of 11 benchmarks, including an older version of
Eclipse (version 3.1.2). We exclude bloat since its application code is reflection-
free. We consider lucene instead of luindex and lusearch separately since these
two benchmarks are derived from lucene with the same reflection usage.

We consider a total of 191 methods in the Java reflection API (version 1.5),
including the ones in java.lang.reflect and java.lang.Class, loadClass()
in java.lang.ClassLoader, and getClass() in java.lang.Object. We have
also considered A.class, which represents the Class object of a class A.

We use Soot [19] to pinpoint the calls to reflection methods in the bytecode
of a program. To understand reflection usage, we consider only the reflective calls
found in the application classes and their dependent libraries but exclude the
standard Java libraries. To increase the code coverage for the five applications
considered, we include the jar files whose names contain the names of these
applications (e.g., *jetty*.jar for Jetty) and make them available under the
process-dir option supported by Soot. For Eclipse4, we use org.eclipse.core.
runtime.adaptor.EclipseStarter to enable Soot to locate all the other jar
files used. We manually inspect the reflection usage in a program in a demand-
driven manner, starting from its side-effect methods, assisted by Open Call Hier-
archy in Eclipse, by following their backward slices. For a total of 609 side-effect
callsites examined, 510 callsites for calling entry methods and 304 callsites for
calling member-introspecting methods are tracked and analyzed.

Below we describe our five findings on reflection usage in our empirical study.

Side-Effect Methods Table 1 lists a total of nine side-effect methods that can
possibly modify or use (as their side effects) the pointer information in a program.
Figure 2 depicts their percentage frequency distribution in the 14 programs
studied. We can see that invoke() and Class::newInstance() are the two
most frequently used (32.7% and 35.3%, respectively, on average), which are



Table 1. Nine side-effect methods and their side effects, assuming that the target class
of clz and ctor is A and the target method (field) of mtd (fld) is m (f ).

Simplified Method Calling Scenario Side Effect
Class::newInstance o = clz.newInstance() o = new A()

Constructor::newInstance o = ctor.newInstance({arg1, ...}) o = new A(arg1, ...)
Method::invoke a = mtd.invoke(o, {arg1, ...}) a = o.m(arg1, ...)

Field::get a = fld.get(o) a = o.f
Field::set fld.set(o, a) o.f = a

Array::newInstance o = Array.newInstance(clz, size) o = new A[size]
Array::get a = Array.get(o, i) a = o[i]
Array::set Array.set(o, i, a) o[i] = a

Proxy::newProxyInstance o = Proxy.newProxyInstance(...) o = new Proxy$*(...)
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Field::set

Field::get
Method::invoke
Array::newInstance

Proxy::newProxyInstance
Constructor::newInstance
Class::newInstance

Fig. 2. Side-effect methods.
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Proxy::getProxyClass
Class::getComponentType
ClassLoader::loadClass

.class
Object::getClass
Class::forName

Fig. 3. Entry methods.

handled by prior pointer analysis tools [4, 20, 21]. However, Array-related side-
effect methods, which are also used in many programs, are previously ignored
but handled by Elf. Note that newProxyInstance() is used in jEdit only.

Entry Reflection Methods Figure 3 shows the percentage frequency distri-
bution of different types of entry methods used. The six as shown are the only
ones found in the first 12 programs. In the last two (Jetty and Tomcat), “Oth-
ers” stands for defineClass() in ClassLoader and getParameterTypes() in
Method only. “Unknown” is included since we failed to find the entry meth-
ods for some side-effect calls such as invoke() even by using Eclipse’s Open
Call Hierarchy tool. Finally, getComponentType() is usually used in the form
of getClass().getComponentType() for creating a Class object argument for
Array.newInstance(). On average, Class.forName() and .class are the top
two most frequently used entry methods (48.1% and 18.0%, respectively).

String Constants and String Manipulation As shown in Figure 4, string
constants are commonly used when calling the two entry methods (34.7% on
average) and the four member-introspecting methods (63.1% on average). In the
presence of string manipulations, many class/method/field names are unknown
exactly. This is mainly because their static resolution requires precisely handling
of many different operations e.g., subString() and append(). Thus, Elf does



an
tlr

ch
ar

t

ec
lip

se fo
p

hs
ql

db

jy
th

on

lu
ce

ne

pm
d

xa
la

n

ec
lip

se
4

ja
va

c

je
di

t

je
tt

y

to
m

ca
t

av
er

ag
e

an
tlr

ch
ar

t

ec
lip

se fo
p

hs
ql

db

jy
th

on

lu
ce

ne

pm
d

xa
la

n

ec
lip

se
4

ja
va

c

je
di

t

je
tt

y

to
m

ca
t

av
er

ag
e

Unknown String Manipulation Unresolved String Manipulation Resolved Const-String

(a) Calls to entry methods (b) Calls to member-introspecting methods

Fig. 4. Classification of the String arguments of two entry methods, forName()
and loadClass(), and four member-introspecting methods, getMethod(),
getDeclaredMethod(), getField() and getDeclaredField().

not handle string manipulations presently. As suggested in Section 5.3.2, how-
ever, incomplete information about class/method/field names can be exploited
in our self-inferencing framework, just like the cast and type information.

We also found that many string arguments are Unknown (55.3% for calling
entry methods and 25.1% for calling member-introspecting methods, on average).
These are the strings that may be read from, say, configuration files or command
lines. Finally, string constants are found to be more frequently used for calling
the four member-introspecting methods than the two entry methods: 146 calls
to getDeclaredMethod() and getMethod(), 27 calls to getDeclaredField()
and getField() in contrast with 98 calls to forName() and loadClass(). This
suggests that the analyses [4, 20] that ignore string constants flowing into some
of these member-introspecting methods may be imprecise (Table 2).

Self-Inferenceable Reflective Calls In real applications, many reflective calls
are self-inferenceable, as illustrated in Figures 8 – 10. Therefore, we should try to
find their targets by aggressively tracking the flow of constant class/method/field
names in the program. However, there are also many input-dependent strings.
For many input-dependent reflective calls, such as factoryField.get(null) in
Figure 8, field.set(null, value) in Figure 9 and method.invoke(target,
parameters) in Figure 10, we can approximate their targets reasonably accu-
rately based on the dynamic types of the arguments of their target calls and the
downcasts (if any) on their returned values. Elf will exploit such self-inferencing
property inherent in reflective code during its reflection analysis.

Retrieving an Array of Method/Field/Constructor Objects Class con-
tains a number of accessor methods for returning an array of such metaobjects
for the target Class object. In the two Eclipse programs, there are four invoke
callsites called on an array of Method objects returned from getMethods and 15
fld.get() and fld.set() callsites called on an array of Field objects returned
by getDeclaredFields(). Ignoring such methods as in prior work [4, 8, 21] may
lead to many missed methods in the call graph of a program.



<Entry'Methods>

<Member1Introspecting'Methods>

<Side1Effect'Methods>

Target'Class'Type'Propagation
Target'Method/Field'Name'Propagation
Target'Class'Type'Inference
Target'Method/Field'Descriptor'Inference

r = (A)  M .invoke(o, {...}) r = (A)  F  .get(o) F  .set(o, a)

Method  M  =  C .getMethod(mName, {...})

Class  C  = Class.forName(cName)

Field   F   = C  .getField(fName)

r = (A)  C .newInstance()

1

2

3

4 5

6

7

Fig. 5. Self-inferencing reflection analysis in Elf.

3 Methodology

We start with a set of assumptions made. We then describe our self-inferencing
approach adopted by Elf. Finally, we compare Elf with the two prior reflection
analyses [4, 8] by summarizing their similarities and differences.

3.1 Assumptions

We adopt all the assumptions from [8]: (1) Closed World : only the classes reach-
able from the class path at analysis time can be used by the program at run
time, (2) Well-behaved Class Loaders: the name of the class returned by a call to
forName(cName) equals cName, and (3) Correct Casts: the downcasts operating
on the result of a call to newInstance() are correct. Due to (1), we will not con-
sider the side-effect method Proxy::newProxyInstance in Table 1 and the entry
method loadClass in Figure 3 as both may use custom class loaders. Finally,
we broaden Correct Casts by also including fld.get() and mtd.invoke().

3.2 Self-Inferencing Reflection Resolution

Figure 5 depicts a typical reflection scenario and illustrates how Elf works.
In this scenario, a Class object C is first created for the target class named
cName. Then a Method (Field) object M (F) representing the target method
(field) named mName (fName) in the target class of C is created. Finally, at some
reflective callsites, e.g., invoke(), get() and set(), the target method (field)
is invoked (accessed) on the target object o, with the arguments, {...} or a. In
the case of newInstance(), the default constructor “init()” called is implicit.

Elf works as part of a pointer analysis, with each being both the producer
and consumer of the other. It exploits a self-inferencing property inherent in
reflective code, by employing the following two component analyses (Figure 5):

Target Propagation (Marked by Solid Arrows) Elf resolves the targets
(methods or fields) of reflective calls, such as invoke(), get() and set(), by
propagating the names of the target classes and methods/fields (e.g., those



pointed by cName, mName and fName if statically known) along the solid
lines into the points symbolized by circles. Note that the second argument
of getMethod() is an array of type Class[]. It may not be beneficial to
analyze it to disambiguate overloaded methods, because (1) its size may be
statically unknown, (2) its components are collapsed by the pointer analysis,
and (3) its components may be Class objects with unknown class names.

Target Inference (Marked by Dashed Arrows) By using Target Propaga-
tion alone, a target method/field name (blue circle) or its target class type
(red circle) at a reflective callsite may be missing, i.e., unknown, due to the
presence of input-dependent strings (Figure 4). If the target class type (red
circle) is missing, Elf will infer it from the dynamic type of the target ob-
ject o (obtained by pointer analysis) at invoke(), get() or set() (when o
!= null) or the downcast (if any), such as (A), that post-dominantly op-
erates on the result of a call to newInstance(). If the target method/field
name (blue circle) is missing, Elf will infer it from (1) the dynamic types
of the arguments of the target call, e.g., {...} of invoke() and a of set(),
and/or (2) the downcast on the result of the call, such as (A) at invoke()
and get(). Just like getMethod, the second argument of invoke() is also an
array, which is also similarly hard to analyze statically. To improve precision,
we disambiguate overloaded target methods with a simple intraprocedural
analysis only when the array argument can be analyzed exactly element-wise.

To balance soundness, precision and scalability in a disciplined manner, Elf
adopts the following inference principle: a target method or field is resolved at a
reflective callsite if both its target class type (red circle) and its target method/-
field name (blue circle) can be resolved (i.e., statically discovered) during either
Target Propagation or Target Inference. As a result, the number of spurious tar-
gets introduced when analyzing a reflective call, invoke(), get() or set(), is
minimized due to the existence of two simultaneous constraints (the red and
blue circles). How to relax Elf in the presence of just one such a constraint will
be investigated in future work. Note that the cast operations on newInstance()
will still have to be handled heuristically as only one of the two constraints exists.
As Elf is unsound, so is the underlying pointer analysis. Therefore, a reflective
callsite is said to be resolved if at least one of its targets is resolved.

Let us illustrate Target Inference by considering r = (A) F.get(o) in Fig-
ure 5. If a target field name is known but its target class type (i.e., red circle)
is missing, we infer it by looking at the types of all pointed-to objects o′ by o.
If B is the type of o′, then a potential target class of o is B or any of its super-
types. If the target class type of F is B but a potential target field name (i.e.,
blue circle) is missing, we can deduce it from the downcast (A) to resolve the
call to r = o.f, where f is a member field in B whose type is A or a supertype
or subtype of A. A supertype is possible because a field of this supertype may
initially point to an object of type, say, A and then downcast to A.

In Figure 5, if getMethods() (getFields()) is called at Label 6 (Label 3)
instead, then an array of Method (Field) objects will be returned so that Target



Table 2. Comparing Elf with the two closely-related reflection analyses [4, 8].

Side-Effect Methods Member-Introspecting [8] Doop [4] Elf
Methods

invoke

getMethod
√ √ √ √ √

getDeclaredMethod
√ √ √ √ √ √

getMethods n/a n/a
√

n/a
√ √

getDeclaredMethods n/a n/a
√

n/a
√ √

getField
√ √ √ √ √

get getDeclaredField
√ √ √ √ √ √

set getFields n/a n/a
√

n/a
√ √

getDeclaredFields n/a n/a
√

n/a
√ √

newInstance
√

n/a
√ √

n/a
√

n/a
√

n/a

Propagation from them is implicitly performed. All the other methods available
in Class for introspecting methods/fields/constructors are handled similarly.

3.3 Elf vs. Livshits et al.’s Analysis and Doop

Table 2 compares Elf with Livshits et al.’s and Doop’s analyses [4, 8] in terms
of how four representative side-effect reflective calls are resolved.

Target Propagation Elf resolves a target method/field at a reflective callsite
by requiring both its target class type (red circle) and its target name (blue
circle) to be known. However, this is not the case in the other two analyses.
In the case of Livshits et al.’s analysis, the target class type is always ignored.
Therefore, the target methods/fields with a given name in all the classes in
the program are conservatively included. Doop suffers the opposite problem
by ignoring the target method/field names. As a result, all methods/fields in
the target class are included. Finally, of the three analyses, Elf is the only
one that can handle all the member-introspecting methods listed.

Target Inference Of the three analyses, Elf is the only one to adopt a self-
inferencing principle to find the target classes and methods/fields at a reflec-
tive callsite. Livshits et al.’s analysis narrows the type of reflectively-created
objects at newInstance() in Figure 5, but Doop does not do this. However,
Doop is more sophisticated than Livshits et al.’s analysis in distinguishing
virtual, static and special calls and considering the modifiers of fields for
loads and stores. These are all handled by the Elf reflection analysis.

4 Reflection Resolution

We specify the reflection resolution in Elf as a set of Datalog rules, i.e., mono-
tonic logical inferences (with no negation in a recursion cycle), following the style
of [6]. The main advantage is that the specification is close to the actual imple-
mentation. Datalog has been the basis of several pointer analysis tools [4, 6, 8,
21]. Our rules are declarative: the order of evaluation of rules or examination of
their clauses do not affect the final results. Given a program to be analyzed, these
rules are repeatedly applied to infer more facts until a fixed point is reached.



Elf works as part of a flow-insensitive Andersen’s pointer analysis context-
sensitively. However, all the Datalog rules are given here context-insensitively.

There are 207 Datalog rules. One set of rules handles all the 98 possible
scenarios (i.e., combinations) involving the methods listed in Table 2 (illustrated
in Figure 5), where 98 = 4 (four member-introspecting methods) × 3 (three
side-effect methods, invoke(), get() and set()) × 4 (four possible arrows in
Figure 5) × 2 (two types of side-effect methods each, instance or static) + 2
(newInstance() with a statically known or unknown type). This set of rules is
further divided into those for performing target propagation (involving 4×3×1×
2 + 1 = 25 scenarios) and those for performing target inference. The remaining
set of rules handles Constructor and arrays and performs bookkeeping duties.

Section 4.1 gives a set of domains and input/output relations used. Section 4.2
describes the seven target propagation scenarios corresponding to Labels 1 – 7 in
Figure 5. Section 4.3 describes four representative target inference scenarios. All
the other rules (available as an open-source tool) can be understood analogously.
Section 4.4 discusses briefly some properties about our analysis.

T : set of class types V : set of program variables
M : set of methods F : set of fields
H : set of heap abstractions I : set of invocation sites
N : set of natural numbers S : set of strings
Scall(invo:I, mtd:M ) Vcall(invo:I, base:V, mtd:M )
ActualArg(invo:I, i:N, arg:V ) ActualReturn(invo:I, var:V )
HeapType(heap:H, type:T) Assignable(toType:T, fromType:T)
ThisVar(mtd:M, this:V ) LookUpMtd(type:T, mName:H, dp:S, mtd:M )
MtdString(mtd:M, str:S) StringToClass(strConst:H, type:T)
MtdDecl(type:T, mName:H, dp:S, mtd:M ) FldDecl(type:T, fName:H, fType:T, fld:F)
PublicMtd(type:T, mName:H, mtd:M ) PublicFld(type:T, fName:H, fld:F)
NewInstanceHeap(type:T, heap:H ) Type-ClassHeap(type:T, clzHeap:H )
Mtd-MtdHeap(mtd:M, mtdHeap:H ) Fld-FldHeap(fld:F, fldHeap:H )
VarPointsTo(var:V, heap:H ) CallGraph(invo:I, mtd:M )
FldPointsTo(base:H, fld:F, heap:H ) RefCallGraph(invo:I, mtd:M )

Fig. 6. Domains and input/output relations.

4.1 Domains and Input/Output Relations

Figure 6 shows the eight domains used, 18 input relations and four output rela-
tions. Given a method mtd called at an invocation site I, as a static call (Scall)
or a virtual call (Vcall), its i-th argument arg is identified by ActualArg and
its returned value is assigned to var as identified by ActualReturn.

HeapType describes the types of heap objects. Assignable is the usual sub-
typing relation. ThisVar correlates this to each method where it is declared.
MtdString specifies the signatures (in the form of strings) for all the meth-
ods, including also their containing class types and return types. StringTo-
Class records the class type information for all compile-time string names.
LookUpMtd matches a method mtd named mName with descriptor dp to its
definition in a class, type. For simplicity, mName is modeled as a heap object in



domain H rather than a string in S. We have done the same for method/field
names in MtdDecl, FldDecl, PublicMtd and PublicFld.

MtdDecl records all methods and their declaring classes and FldDecl records
all fields and their declaring classes. To find the metaobjects returned by
getMethod() and getField(), PublicMtd matches a public target method m
named mName in a class of type type, its superclasses or its interfaces searched
in that order (as discussed in Section 2.1) and PublicFld does the same for
fields except that type’s interfaces are searched before type’s superclasses.

The last four input relations record four different types of heap objects cre-
ated. NewInstanceHeap relates the heap objects created at newInstance() calls
with their class types. Type-ClassHeap, Mtd-MtdHeap and Fld-FldHeap re-
late all the classes, methods and fields in the (closed-world) program to their
metaobjects (i.e., Class, Method and Field objects), respectively.

When working with a pointer analysis, Elf both uses and modifies the four
output relations recording the results of the pointer analysis. VarPointsTo and
FldPointsTo maintain the points-to relations and CallGraph encodes the call
graph of the program. As in [4], RefCallGraph is used to record the potential
callees resolved from a call to invoke(). The second argument of invoke() is an
array containing the arguments of its target calls; special handling is needed to
assign these arguments to the corresponding parameters of its target methods.

4.2 Target Propagation

We give seven target propagation scenarios corresponding to Labels 1 – 7 in Fig-
ure 5 when both a target method/field name and its target class type are known.
These rules (used later in Section 4.3) are standard except for getField() and
getMethod(). These two methods are ignored by Doop [4] but handled conser-
vatively in [8], as shown in Table 2, with the target class of a target method/field
ignored, causing the targets in all the classes in the program to be included.

The syntax of a rule is easy to understand: “←” separates the inferred fact
(i.e., the head of the rule) from the preciously established facts (i.e., the body
of the rule). In Scenario P1, the rule for ForName says that among all static
invocation sites, record the calls to forName() in the ForName relation. The
rule for ResolvedClassType records the fact that all such invocation sites with
constant names are resolved. Note that const is a heap object representing “string
constant”. Meanwhile, the points-to and call-graph relations are updated. For
each resolved class, its static initialiser “<clinit>()”, at the callsite is discovered
in case the class has never been referenced in the program.

In Scenario P2, a newInstance() call is analyzed for each statically known
class type pointed by clz. For such a type, a call to its default constructor
“<init> ()” is noted. In Scenario P3 for handling a getField() call, both the
statically known field and all the known target classes pointed by clz, i.e., fld-
Name (a heap object representing “string constant”) and type are considered.
Similarly, a getMethod() call is handled in Scenario P6. Note that its second
argument is ignored as discussed in Section 3.2. In Scenarios P4 and P5, calls to
get() and set() are analyzed, respectively. Finally, in Scenario P7, an invoke()



Scenario P1: Class clz = Class.forName(“string constant”);
ForName(invo) ←

Scall(invo, mtd), MtdString(mtd,
“java.lang.Class: java.lang.Class forName(java.lang.String)”).

ResolvedClassType(invo, type) ←
ForName(invo), ActualArg(invo, 1, arg),
VarPointsTo(arg, const), StringToClass(const, type).

CallGraph(invo, clinit), VarPointsTo(clz, clzHeap) ←
ResolvedClassType(invo, type), Type-ClassHeap(type, clzHeap),
MtdString(clinit, type.toString()+“.<clinit>()”), ActualReturn(invo, clz).

Scenario P2: Object obj = clz.newInstance();
NewInstance(invo, clz) ←

Vcall(invo, clz, mtd), MtdString(mtd, “java.lang.Class: java.lang.Object newInstance()”).
CallGraph(invo, init), HeapType(heap, type),
VarPointsTo(this, heap), VarPointsTo(obj, heap) ←

NewInstance(invo, clz), VarPointsTo(clz, clzHeap), Type-ClassHeap(type, clzHeap),
NewInstanceHeap(type, heap), MtdString(init, type.toString()+“.<init>()”),
ThisVar(init, this), ActualReturn(invo, obj ).

Scenario P3: Field f = clz.getField(“string constant”);
GetField(invo, clz) ←

Vcall(invo, clz, mtd), MtdString(mtd,
“java.lang.Class: java.lang.reflect.Field getField(java.lang.String)”).

ResolvedField(invo, fld) ←
GetField(invo, clz), VarPointsTo(clz, clzHeap),
Type-ClassHeap(type, clzHeap), ActualArg(invo, 1, arg),
VarPointsTo(arg, fldName), PublicFld(type, fldName, fld).

VarPointsTo(f, fldHeap) ←
ResolvedField(invo, fld), Fld-FldHeap(fld, fldHeap), ActualReturn(invo, f ).

Scenario P4: Object to = f.get(obj);
Get(invo, f ) ←

Vcall(invo, f, mtd), MtdString(mtd,
“java.lang.reflect.Field: java.lang.Object get(java.lang.Object)”).

VarPointsTo(to, valHeap) ←
Get(invo, f ), VarPointsTo(f, fldHeap), Fld-FldHeap(fld, fldHeap),
ActualArg(invo, 1, obj ), VarPointsTo(obj, baseHeap),
FldPointsTo(baseHeap, fld, valHeap), ActualReturn(invo, to).

call is handled, identically as in Doop [4] but differently from [8], which approx-
imates its target methods by disregarding the target object obj, on which the
target methods are called.

4.3 Target Inference
When a target method/field name or a target class type is unknown, Elf will in-
fer the missing information, symbolized by red and blue circles along the dashed
arrows in Figure 5. Below we give the Datalog rules for four representative sce-
narios (out of a total of 73 scenarios mentioned earlier for target inference).
Scenario I1: Class clz1 = Class.forName(?); A a = (A) clz2.newInstance().

The post-dominating cast (A) is used to infer the target class types of the
objects reflectively created and pointed to by a, where clz2 points to a Class
object of an unknown type that is initially pointed to by clz1.



Scenario P5: f.set(obj, val);
Set(invo, f ) ←

Vcall(invo, f, mtd), MtdString(mtd,
“java.lang.reflect.Field: void set(java.lang.Object, java.lang.Object)”).

FldPointsTo(baseHeap, fld, valHeap) ←
Set(invo, f ), VarPointsTo(f, fldHeap), Fld-FldHeap(fld, fldHeap),
ActualArg(invo, 1, obj ), VarPointsTo(obj, baseHeap),
ActualArg(invo, 2, val), VarPointsTo(val, valHeap).

Scenario P6: Method m = clz.getMethod(“string const”, {...});
GetMethod(invo, clz) ←

Vcall(invo, clz, mtd), MtdString(mtd,
“java.lang.Class: java.lang.reflect.Method getMethod(java.lang.String, java.lang.Class[])”).

ResolvedMethod(invo, mtd) ←
GetMethod(invo, clz), VarPointsTo(clz, clzHeap),
Type-ClassHeap(type, clzHeap), ActualArg(invo, 1, arg),
VarPointsTo(arg, mtdName), PublicMtd(type, mtdName, mtd).

VarPointsTo(m, mtdHeap) ←
ResolvedMethod(invo, mtd), Mtd-MtdHeap(mtd, mtdHeap), ActualReturn(invo, m).

Scenario P7: Object to = m.invoke(obj, {...});
Invoke(invo, m) ←

Vcall(invo, m, mtd), MtdSigString(mtd, “java.lang.reflect.Method:
java.lang.Object invoke(java.lang.Object, java.lang.Object[])”).

RefCallGraph(invo, virtualMtd), VarPointsTo(this, heap) ←
Invoke(invo, m), VarPointsTo(m, mtdHeap), Mtd-MtdHeap(mtd, mtdHeap),
ActualArg(invo, 1, obj ), VarPointsTo(obj, heap), HeapType(heap, type),
MtdDecl(_, mtdName, mtdDescriptor, mtd), ThisVar(virtualMtd, this),
LookUpMethod(type, mtdName, mtdDescriptor, virtualMtd).

Scenario I2: Field[] fs1=clz.getDeclaredFields(); f2=fs2[i]; a=(A)f1.get(obj).
The post-dominating type (A) is used to infer the target fields reflectively
accessed at get() on the Field objects that are initially stored into fs1 and
later pointed to by f1. Note that clz is known in this case.

Scenario I3: Field[] fs1=clz.getDeclaredFields(); f2 = fs2[i]; f1.set(obj, val).
The dynamic types of val are used to infer the target fields modified.

Scenario I4: Method m1=clz.getMethod(?, params); a=m2.invoke(obj, args).
The dynamic types of args will be used to infer the target methods called
on the Method objects that are pointed to by m2 but initially created at a
call to m1=clz.getMethod(), where clz is known.

Figure 7 gives a few new relations used for handling these four scenar-
ios. The first three are used to identify metaobjects with non-constant names
(called placeholder objects). ClassPh identifies all the invocation sites, e.g.,
Class.forName(?), where Class objects with unknown class names are cre-
ated. MemberPh identifies the invocation sites, e.g., calls to clz.getMethod(?,
...) (clz.getField(?)), where Method (Field) objects are created to represent
unknown method (field) names ‘?’ in a known class clz of type type. If clz is also
unknown, a different relation (not used here) is called for. Furthermore, Mem-
berPhArray identifies which placeholder objects represent arrays. For example,
a call to clz.getDeclaredFields() returns an array of Field objects.



ClassPh(invo:I, heap:H ) MemberPh(invo:I, type:T, heap:H )
MemberPhArray(invo:I, array:H ) NewInstanceCast(invo:I, castType:T)
GetCast(invo:I, castType:T) HierarchyType(castType:T, type:T)
ArrayPointsTo(arr:H, heap:H )

Fig. 7. Input and output relations for handling target inference.

We leverage the type cast information in target inference. The NewInstance-
Cast and GetCast relations correlate each downcast with their post-dominated
invocation sites newInstance() and get(), respectively. HierarchyType(type,
castType) records all the types such that either Assignable(castType, type) or
Assignable(type, castType) holds. Finally, the output relation ArrayPointsTo
records the heap objects stored in an array heap object arr.

Below we describe the target inference rules for the four scenarios above.
Note that once a missing target name or a target class or both are inferred,
some target propagation rules that could not be applied earlier may be fired.

Scenario I1: Class clz1 = Class.forName(?); A a = (A) clz2.newInstance().
If the string argument strHeap marked by ‘?’ in Class.forName(?) is not con-
stant (i.e., if StringToClass does not hold), then clz1 points to a placeholder
object phHeap, indicating a Class object of an unknown type. Such pointer in-
formation is computed together with the pointer analysis used. If clz2 points to
a placeholder object, then a can be inferred to have a type type that is assignable
to the post-dominating cast castType, i.e., A. As type may not be initialized else-
where, a call to its “<clinit>()” is conservatively assumed. After this, the second
rule in Scenario P2 can be applied to the clz2.newInstance() call.

Scenario I1: Class clz1 = Class.forName(?); A a = (A) clz2.newInstance();
VarPointsTo(clz1, phHeap) ←

ForName(invo), ActualArg(invo, 1, arg), VarPointsTo(arg, strHeap),
¬StringToClass(strHeap, _), ClassPh(invo, phHeap), ActualReturn(invo, clz1).

CallGraph(invo, clinit), VarPointsTo(clz2, clzHeap) ←
NewInstance(invo, clz2), VarPointsTo(clz2, phHeap), ClassPh(_, phHeap),
NewInstanceCast(invo, castType), Assignable(castType, type),
Type-ClassHeap(type, clzHeap), MtdString(clinit, type.toString()+“.<clinit>()”).

Unlike [8], Elf does not use the cast (A) to further constrain the Class ob-
jects that are created for clz1 and later passed to clz2, because the cast operation
may not necessarily post-dominate the corresponding forName() call.

Scenario I2: Field[] fs1=clz.getDeclaredFields(); f2=fs2[i]; a=(A) f1.get(obj).
Let us first consider a real case in Figure 8. In line 1683, factoryField is ob-
tained as a Field object from an array of Field objects created in line 1653 for
all the fields in URLConnection. In line 1687, the object returned from get() is
cast to java.net.ContentHandlerFactory. By using the cast information, we
know that the call to get() may only access the static fields of URLConnection
with the type java.net.ContentHandlerFactory, its supertypes or its sub-
types. Otherwise, all the static fields in URLConnection must be assumed. The
reason why both the supertypes and subtypes must be considered was explained
in Section 3.2. These type relations are captured by HierarchyType.



Application:Eclipse(v4.2.2):
Class:org.eclipse.osgi.framework.internal.core.Framework
1652 public static Field getField(Class clazz, ...) {
1653 Field[] fields = clazz.getDeclaredFields(); ...
1654 for(int i=0; i<fields.length; i++) { ...
1658 return fields[i]; }}
1682 private static void forceContentHandlerFactory(...) {
1683 Field factoryField = getField(URLConnection.class, ...);
1687 java.net.ContentHandlerFactory factory =

(java.net.ContentHandlerFactory) factoryField.get(null);...}

Fig. 8. Target field inference based on the type cast at get().

The same code pattern in Figure 8 also appears in five other places in
Eclipse4. The prior analyses [4, 8, 20] cannot resolve the call get() above since
getDeclaredFields() is ignored. Elf has succeeded in deducing that only two
out of a total of 13 static fields in URLConnection are accessed at the callsite.

Scenario I2: Field[] fs1 = clz.getDeclaredFields(); f2 = fs2[i]; a = (A) f1.get(obj);
GetDeclaredFields(invo, clz) ←

Vcall(invo, clz, mtd), MtdString(mtd,
“java.lang.Class: java.lang.reflect.Field[] getDeclaredFields()”).

ArrayPointsTo(phArray, phHeap), VarPointsTo(fs1, phArray) ←
GetDeclaredFields(invo, clz), VarPointsTo(clz, clzHeap), Type-ClassType(type, clzHeap)
MemberPhArray(invo, phArray),MemberPh(invo, type, phHeap),ActualReturn(invo, fs1).

VarPointsTo(f1, fldHeap) ←
Get(invo, f1), VarPointsTo(f1, phHeap),
MemberPh(getDecInvo, type, phHeap), GetDeclaredFields(getDecInvo, _),
GetCast(invo, castType), HierarchyType(castType, fldType),
FldDecl(type, _, fldType, fld), Fld-FldHeap(fld, fldHeap).

It is now easy to understand Scenario I2. The second rule processes each
call to getDeclaredFields(). For each class clz of a known type, type, fs1 is
made to point to phArray (a placeholder representing an array), which points to
phHeap (a placeholder representing implicitly all the fields obtained in the call
to getDeclaredFields()). When f2 = fs2[i] is analyzed by the pointer analysis
engine, f1 will point to whatever fs1 contains if the values of fs1 flow into fs2
and the values of f2 flow into f1. The last rule leverages the type cast information
to resolve f1 at a get() call to its potential target Field objects, fldHeap. As a
result, the second rule in Scenario P4 has now been enabled.

Scenario I3: Field[] fs1=clz.getDeclaredFields(); f2=fs2[i]; f1.set(obj, val).
This is similar to Scenario I2, except that the dynamic types of val (e.g., the
dynamic type of value in line 290 in Figure 9 is java.lang.String) are used to
infer the target fields modified. Thus, the second rule in Scenario P5 is enabled.

Application:Eclipse(v4.2.2):
Class:org.eclipse.osgi.util.NLS
300 static void load(final String bundleName, Class<?> clazz) {
302 final Field[] fieldArray = clazz.getDeclaredFields();
336 computeMissingMessages(..., fieldArray, ...);...}
267 private static void computeMissingMessages(..., Field[] fieldArray, ...) {
272 for (int i = 0; i < numFields; i++) {
273 Field field = fieldArray[i];
284 String value = "NLS missing message: " + ...;
290 field.set(null, value);...}}

Fig. 9. Target field inference based on the dynamic type of value in set().



Note that the set() call that appears in line 290 in Figure 9 cannot be
handled by the prior analyses [4, 8, 20] since getDeclaredFields() is ignored.
This code pattern appears one more time in line 432 in the same class, i.e.,
org.eclipse.osgi.util.NLS. These two set() calls are used to initialize all
non-final static fields in four classes (by writing a total of 276 fields each time).
Based on target inference, Elf has found all the target fields accessed precisely.

Scenario I3: Field[] fs1 = clz.getDeclaredFields(); f2 = fs2[i]; f1.set(obj, val);
VarPointsTo(f1, fldHeap) ←

Set(invo, f1), VarPointsTo(f1, phHeap), MemberPh(getDecInvo, clzType, phHeap),
GetDeclaredFields(getDecInvo, _), ActualArg(invo, 2, val), VarPointsTo(val, valHeap),
HeapType(valHeap, type), Assignable(fldType, type),
FldDecl(clzType, _, fldType, fld), Fld-FldHeap(fld, fldHeap).

Scenario I4: Method m1=clz.getMethod(?, params); a=m2.invoke(obj, args).
Let us consider a real case from Eclipse4 in Figure 10. In line 174, the Class ob-
jects on which getMethod() is invoked can be deduced from the types of the ob-
jects pointed to by target but cmd is read from input. Thus, in line 174, method
is unknown even though its target class is known. Note that parameters is explic-
itly initialized to {this} in line 155. As the type FrameworkCommandInterpreter
has not subtypes, we conclude that the corresponding parameter of each poten-
tial target method must have this type or one of its supertypes.

Application:Eclipse(v4.2.2):
Class:org.eclipse.osgi.framework.internal.core.FrameworkCommandInterpreter
123 public Object execute(String cmd){...
155 Object[] parameters = new Object[]{this}; ...
167 for(int i=0; i<size; i++) {
174 method = target.getClass().getMethod("_"+cmd, parameterTypes);
175 retval = method.invoke(target, parameters); ...}}

Fig. 10. Target inference based on the dynamic types of parameters in invoke().

As explained in Section 3.2, we have relied on an intraprocedural analysis to
perform the inference when args can be analyzed exactly element-wise as is the
case in Figure 10. The MatchArgs(args, mtd) relation over V ×M maintains
target methods mtd found from args this way.

Scenario I4: Method m1 = clz.getMethod(?, params); a = m2.invoke(obj, args);
VarPointsTo(m1, phHeap) ←

GetMethod(getInvo, clz), ActualArg(getInvo, 1, arg), VarPointsTo(arg, strHeap),
¬MtdDecl(_, strHeap, _, _), VarPointsTo(clz, clzHeap), Type-ClassHeap(type, clzHeap),
MemberPh(getInvo, type, phHeap), ActualReturn(getInvo, m1).

VarPointsTo(m2, mtdHeap) ←
Invoke(invo, m2), VarPointsTo(m2, phHeap), MemberPh(getInvo, type, phHeap),
GetMethod(getInvo, _), PublicMtd(type, _, mtd), ActualArg(invo, 2, args),
MatchArgs(args, mtd), Mtd-MtdHeap(mtd, mtdHeap).

Let us now look at the rules given in Scenario I4 where clz points to statically
known class, type, but the target methods at invoke() are unknown, just like
the the case illustrated in Figure 10. In the first rule applied to getMethod(),
MthDecl(_, strHeap, _, _) does not hold, since strHeap is not a constant. As



a result, m1 points to a placeholder Method object (indicating that its method
name is unknown). In the second rule, if m2 at the invoke() callsite points to a
placeholder object, PublicMtd will be used to find all the target methods from
the class type based on the ones inferred from args and stored in MatchArgs.

Once the Method objects at an invoke callsite are resolved, the second rule
in Scenario P7 can be applied to resolve the target methods.

Note that the invoke() call in Figure 10 cannot be resolved by the prior
analyses [4, 8] since getMethod() is either ignored [4] or cannot be handled due
to unknown method name [8]. Based on target inference, Elf has found 50 target
methods at this callsite, out of which 48 are real targets by manual inspection.

4.4 Properties

Like the prior reflection analyses [4, 8, 20], Elf is unsound. Firstly, Elf ignores
the part of the Java reflection API related to dynamic class loading. Second, Elf
infers a target at a reflective callsite if and only if both its target name and its
target class are known to strike a good tradeoff between soundness and precision.
However, Elf’s rules can soundly analyze a reflective callsite if all its targets
are known (by its target propagation) or inferred (by its target inference). These
properties follow directly from the Datalog rules formulated in this section.

5 Evaluation

The goal of this research is to produce an open-source reflection analysis to im-
prove the effectiveness of modern pointer analysis tools for Java applications.
We evaluate Elf against a state-of-the-art reflection analysis implemented in
Doop [4]. Being unsound, both analyses make different tradeoffs among sound-
ness, precision and scalability. Our evaluation has validated the following hy-
potheses about our self-inferencing approach in handling reflective code.

Soundness and Precision Tradeoffs Elf can usually resolve more reflective
call targets than Doop while avoiding many of its spurious targets.

Target Propagation vs. Target Inference Elf can resolve more reflective
call targets when target propagation fails, by inferring the missing target
information with target inference. This can be particularly effective for some
reflection idioms used in practice (as highlighted in Figures 8 – 10).

Effectiveness When used as part of an under-approximate pointer analysis,
Elf is effective measured in terms of a few popular metrics used.

Scalability Compared to Doop, Elf achieves the above results at small anal-
ysis time increases for a set of Java programs evaluated.

5.1 Implementation
We have implemented Elf with context sensitivity in Doop (r160113) [4], a
modern pointer analysis tool for Java. On top of Doop’s 64 Datalog rules for
reflection handling, we have added 207 rules. Elf is comprehensive in handling
the Java reflection API, by tackling significantly more methods than prior work



[4, 8, 9, 20]. Specifically, Elf handles the first eight side-effect methods listed
in Table 1, all member-introspecting methods in the reflection API, and four
out of the six entry methods, forName(), getClass(), getComponentType()
and .class, shown in Figure 3. For the three side-effect methods on Array,
Array::newInstance is handled similarly as Class::newInstance. We have ig-
nored Proxy::newProxyInstance(...) in Table 1 and loadClass() and
getProxyClass() in Figure 3 due to the closed-world assumption (Section 3.1).

We have modified the fact generator in Doop by using an intraprocedural
post-dominance algorithm in Soot [19] to generate the post-dominance facts,
e.g., NewInstanceCast and GetCast in Figure 7 (and InvokeCast not given).

5.2 Experimental Setup

Our setting uses the LogicBlox Datalog engine (v3.9.0), on a Xeon E5-2650 2GHz
machine with 64GB of RAM. We use all the 11 DaCapo benchmarks (v.2006-10-
MR2) and two real-world applications from our reflection-usage study,
Eclipse-4.2.2 and javac-1.7.0. We have excluded Tomcat, Jetty and jEdit,
since neither Doop nor Elf handles the custom class loaders used in the first
two applications and neither can terminate in three hours for the last one. We
have used recent (large) standard libraries: JDK 1.7.0_25 for Eclipse v4.2.2
and javac v1.7.0 and JDK 1.6.0_45 for the remaining programs. For the fop
benchmark from DaCapo, we added org.w3c.dom and org.w3c.css to enable it
to be analyzed. Since java.util.CurrencyData is only used reflectively, we have
made it available in the class path of the fact generator to make it analyzable.

We compare Elf with Doop’s reflection analysis, when both are performed
in the Doop’s pointer analysis framework. Both analyses for a program are
performed in the SSA form of the program generated by Soot, under 1-callsite
context sensitivity implemented in Doop. An array is treated as a whole.

5.3 Results and Analysis

For each program analyzed, the results presented are obtained from all the an-
alyzed code, in both the application itself and the libraries used.

5.3.1 Soundness and Precision Tradeoffs Elf and Doop are unsound in
different ways. So either reflection analysis, when working with the same pointer
analysis, may resolve some true targets that are missed by the other, in gen-
eral. Elf handles a significant part of the Java reflection API that is ignored by
Doop (Table 2). To eliminate the impact of this aspect of Elf on its analysis
results, we have designed a configuration of Elf, called Elfd, that is restricted
to the part of the reflection API handled by Doop. These include three entry
methods, forName(), getClass() and .class, two member-introspecting meth-
ods, getDeclaredMethod() and getDeclaredField(), as well as four side-effect
methods, invoke(), set(), get() and newInstance() without using the cast
inference. Elfd behaves identically as Doop except for the following three dif-
ferences. First, Elfd applies target propagation since this is more precise than



Doop’s analysis in cases when both target method/field names and their target
class names are known. Second, Elfd uses target inference wherever target prop-
agation fails. Finally, Elfd handles m=clz.getDeclaredMethod(mName, ...)
(m=clz.getDeclaredField(fName)) identically as Doop for each known Class
object C pointed to by clz only when mName (fName) points to a target name
that cannot be resolved by either target propagation or target inference. In this
case, m is resolved to be the set of all declared targets in the target class C.

There are two caveats. First, a call to getDeclaredMethod("str-const") or
getDeclaredField("str-const") is ignored if str-const is absent in the closed-
world. Second, in its current release (r160113), Doop resolves mtd.invoke(o,args)
to calls to potential target methods unsoundly by using B from the dynamic
types B[] of the array objects obj pointed by args to help filter out many ob-
jects passed from args to the corresponding parameters in the target methods.1
We have modified two rules, LoadHeapArrayIndex in reflective.logic and
VarPointsTo in context-sensitive.logic, to make this handling sound by
using the dynamic types of the objects pointed to by obj instead. Both Elfd

and Doop handle all such interprocedural assignments exactly this way.
Table 3 compares Elfd and Doop in terms of their soundness and precision

tradeoffs made when resolving invoke(), get() and set() calls. Both analyses
happen to resolve the same number of reflective callsites. For a program, Elfd

usually discovers the same target methods/fields while avoiding many spurious
ones introduced by Doop. We have carried out a recall experiment for all the 11
DaCapo benchmarks by using Tamiflex [2] under its three inputs (small, default
and large). We have excluded Eclipse4 and Javac since the former cannot be
analyzed by Tamiflex and the latter has no standard inputs. We found that the
set of true targets resolved by Elfd is always the same as the set of true targets
resolved by Doop for all the benchmarks except jython (analyzed below).

In jython, there is a call m=clz.getDeclaredMethod("typeSetup", ...)
in method PyType::addFromClass(), where clz points to a spurious Class
object representing the class builtin during the analysis. Elfd ignores
builtin since typeSetup is not one of its members. However, Doop resolves

m to be any of the declared methods in the class, including classDictInit(),
opportunistically. As a result, a spurious call edge to builtin ::
classDictInit() is added from an invoke() site in PyType::fillFromClass().
However, this target method turns out to be called from the (only) invoke site
contained in PyJavaClass ::initialize() on a Method object created at the
(only) getMethod call, which is also contained in initialize(). By analyzing
this target method, Doop eventually resolves five true target methods named
typeSetup at m=clz.getDeclaredMethod ("typeSetup", ...) and seven true
target fields at clz.getDeclareField ("exposed_" + name).get(null) in
PyType::exposed_decl_get_object(). These 12 targets are missed by Elfd.

In Elfd, the primary contributor for Elf’s precision improvement (over
Doop) is its target propagation component. It is significantly more beneficial

1 Doop has recently fixed this unsound handling in its latest beta version (r5459247),
which also includes analyzing some reflective calls not handled in Table 2.



Table 3. Comparing Elfd and Doop on reflection resolution. According to this par-
ticular configuration of Elf, C denotes the same number of resolved side-effect callsites
in both analyses and T denotes the number of target methods/fields resolved by either.

antlr bloat chart eclipse fop hsqldb jython luindex lusearch pmd xalan eclipse4 javac

in
vo

ke C 2 2 5 2 5 - 3 2 2 2 2 6 0

T Doop 77 77 1523 77 1730 - 897 77 77 77 77 78 0
Elfd 3 3 11 3 11 - 15 3 3 3 3 8 0

se
t C 0 0 0 0 0 - 0 0 0 0 0 2 0

T Doop 0 0 0 0 0 - 0 0 0 0 0 31 0
Elfd 0 0 0 0 0 - 0 0 0 0 0 2 0

ge
t C 9 9 9 9 9 - 10 9 9 9 9 2 2

T Doop 194 194 194 194 194 - 1292 194 194 194 194 132 3401
Elfd 28 28 28 28 28 - 1094 28 28 28 28 21 23

to track both constant class names and constant method/field names simultane-
ously rather than either alone, as suggested earlier in Figure 4.

5.3.2 Target Propagation vs. Target Inference To evaluate their individ-
ual contributions to the soundness and precision tradeoff made, we have included
a version of Elf, named Elfp, in which only target propagation is used. Table 4
is an analogue of Table 3 except that Elf and Elfp are compared. By examining
their results for a side-effect method across the 13 programs, we find that both
component analyses have their respective roles to play. For most programs, Elf
has added zero or a moderate number of additional targets on top of Elfp. This
has two implications. First, target propagation can be quite effective for some
programs if they exhibit many constant class/method/field names (Figure 4).
Second, target inference does not introduce many spurious targets since Elf re-
solves a reflective target only when both its name and its target class are known
(symbolized by the simultaneous presence of two circles in Figure 5).

From the same recall experiment described earlier, Elf is found to resolve no
fewer true targets across the 11 DaCapo benchmarks except jython than Doop.
In jython, Elf has resolved all the true target methods resolved by Doop by
analyzing all member-introspecting methods. In the case of this afore-mentioned
call to clz.getDeclareField("exposed_" + name).get(null), Elf fails to
discover any target fields due to the absence of cast information. In contrast,
Doop has resolved 1098 target fields declared in all Class objects pointed to by
clz, with only 22 sharing exposed_ as the prefix in their names. In our recall
experiment, 21 of these 22 targets are accessed. Elf can be easily generalized
to infer the target fields accessed (the blue circle shown in Figure 5) at this
get() callsite in a disciplined manner. By also exploiting the partially known
information about target names (such as the common prefix exposed_), Elf will
only need to resolve the 22 target names starting with exposed_ at this callsite.

Target inference can often succeed where target propagation fails, by resolv-
ing more reflective targets at some programs. Let us consider Eclipse4. The
situation for Eclipse in DaCapo is similar. In Eclipse4, there are two set()
callsites with their usage pattern illustrated in Figure 9. Elfp discovers one tar-
get from each callsite. However, Elf has discovered 553 more, one from one of
the two callsites and 552 true targets at the two callsites as discussed in Sec-



Table 4. Comparing Elf and Elfp, where C and T are as defined in Table 3.
antlr bloat chart eclipse fop hsqldb jython luindex lusearch pmd xalan eclipse4 javac

in
vo

ke Elfp C 2 2 9 5 9 6 7 2 2 2 15 15 4
T 3 3 30 20 30 53 58 3 3 3 31 91 25

Elf C 2 2 10 8 10 8 7 2 2 2 16 26 4
T 3 3 37 94 37 228 58 3 3 3 36 227 25

se
t Elfp C 0 0 0 0 0 0 0 0 0 0 0 2 0

T 0 0 0 0 0 0 0 0 0 0 0 2 0

Elf C 0 0 0 2 0 0 0 0 0 0 0 4 0
T 0 0 0 580 0 0 0 0 0 0 0 555 0

ge
t Elfp C 9 9 9 9 9 11 9 9 9 9 9 2 2

T 28 28 28 28 28 32 28 28 28 28 28 21 23

Elf C 9 9 9 9 9 11 11 9 9 9 9 8 2
T 28 28 28 28 28 41 34 28 28 28 28 35 23

tion 4.3. As for get(), Elf has found 14 more targets than Elfp, with 12 true
targets found from the six code fragments (with their usage pattern given in
Figure 8), contributing two each, as explained in Section 4.3. Finally, there are
two invoke() callsites similar to the one illustrated in Figure 10. Elf has dis-
covered a total of 2× 48 = 96 true target methods invoked at the two callsites.
How to resolve one such invoke() call is also discussed in Section 4.3.

When analyzing Java programs, a reflection analysis works together with a
pointer analysis. Each benefits from precision improvements from the other. If
the pointer analysis used from Doop is 2-callsite-sensitive+heap, then C = 5
and T = 22 for Elfp and C = 8 and T = 83 for Elf for hsqldb in Table 4.

5.3.3 Effectiveness Table 5 shows the effectiveness of Elf when it is used
in an under-approximate pointer analysis, which is usually regarded as being
sound in the literature. In addition to Doop, Doopb is its baseline version with
reflection ignored except that only calls to newInstance() are analyzed (pre-
cisely). As in [6], the same five precision metrics are used, including two clients,
poly v-calls and may-fail casts (smaller is better). Elf distinguishes different
constant class/method/field names. As mentioned in an afore-mentioned caveat,
Doop has been modified to behave identically. However, Doopb distinguishes
only different constant class names as it ignores the first String parameter in
calls to getDeclaredMethod() or getDeclaredField(). As a result, Doopb rep-
resents all other string constants (the ones which do not represent class names)
with a single string object. To ensure a fair comparison (and follow [6, 15]), we
have post-processed the analysis results from both Doop and Elf using the
same string abstraction as in Doopb. As Doop does not exploit the type cast
for newInstance(), Elf does not do it either. In addition, Elf’s capability for
handling reflective code on Array is turned off as Doop ignores it.

As all the three analyses are unsound, the results in Table 5 must be inter-
preted with caution. Having compared Elfd and Doop earlier, we expect these
results to provide a rough indication about the effectiveness of Elf (relative to
Doop) in reflection resolution. Despite the fact that Elf usually resolves more
true targets as explained earlier (Tables 3 and 4), Elf exhibits smaller numbers
in eight programs in terms of all the five metrics and slightly larger ones in the



Table 5. Comparing Elf and Doop in terms of five pointer analysis precision met-
rics (smaller is better): the average size of points-to sets, the number of edges in the
computed call-graph (including regular and reflective call graph edges), the number of
virtual calls whose targets cannot be disambiguated, the number of casts that cannot
be statically shown safe, and the total points-to set size. The benchmarks for which
Elf produced larger numbers than Doop are highlighted in bold.

average
objects
per var

call graph edges
∼

reachable methods

poly v-calls
/

reachable v-calls

may-fail casts
/

reachable casts

size of var
points-to

(M)

antlr
Doopb 29.26 61107∼8.9K 2000/33K 1040/1.8K 16.1
Doop 29.43 61701∼9.1K 2002/33K 1060/1.8K 16.3
Elf 29.02 61521∼9.0K 2001/33K 1051/1.8K 16.1

bloat
Doopb 42.36 70661∼10.1K 2144/31K 1998/2.8K 32.7
Doop 42.29 71202∼10.3K 2146/31K 2016/2.8K 32.9
Elf 42.01 71075∼10.3K 2145/31K 2009/2.8K 32.7

chart
Doopb 43.06 82148∼15.7K 2820/39K 2414/3.7K 47
Doop 43.55 85878∼16.3K 2928/40K 2534/3.9K 48.8
Elf 42.99 83872∼16.1K 2845/40K 2454/3.8K 48.1

eclipse
Doopb 21.11 53738∼9.4K 1520/23K 1149/2.0K 12.3
Doop 21.31 54357∼9.6K 1521/23K 1169/2.0K 12.5
Elf 21.41 55885∼9.9K 1582/25K 1297/2.2K 12.8

fop
Doopb 36.72 77052∼15.4K 2751/34K 2082/3.3K 39.7
Doop 37.3 80958∼16.1K 2871/35K 2177/3.5K 41.5
Elf 36.7 78758∼15.8K 2775/35K 2119/3.4K 40.7

hsqldb
Doopb 23.79 73950∼13.2K 1888/36K 1765/2.8K 17.8
Doop — — — — —
Elf 34.4 78290∼13.7K 1939/37K 1825/2.9K 27.5

jython
Doopb 28.31 57127∼9.8K 1652/24K 1305/2.2K 17.4
Doop 107.29 96200∼13.4K 2534/29K 2252/3.2K 89
Elf 112.09 93503∼12.9K 2478/28K 2291/3.2K 88.5

luindex
Doopb 16.65 42130∼7.9K 1189/18K 829/1.5K 7.7
Doop 16.92 42724∼8.1K 1191/18K 849/1.5K 7.8
Elf 16.52 42544∼8.0K 1190/18K 840/1.5K 7.7

lusearch
Doopb 17.57 45399∼8.5K 1368/19K 930/1.6K 8.6
Doop 17.82 45992∼8.7K 1370/20K 950/1.7K 8.7
Elf 17.43 45812∼8.7K 1369/19K 941/1.6K 8.6

pmd
Doopb 18.9 49230∼9.3K 1258/21K 1265/2.0K 11.2
Doop 19.12 49825∼9.5K 1260/21K 1285/2.0K 11.4
Elf 18.76 49644∼9.5K 1259/21K 1276/2.0K 11.2

xalan
Doopb 25.84 58356∼10.6K 1977/26K 1202/2.1K 15.5
Doop 25.95 58896∼10.8K 1979/26K 1220/2.1K 15.7
Elf 27.25 60260∼10.9K 2085/26K 1263/2.1K 16.7

eclipse4
Doopb 30.48 57141∼10.1K 1634/25K 1223/2.2K 20.3
Doop 30.4 58060∼10.4K 1671/25K 1335/2.3K 20.4
Elf 33.01 61129∼10.8K 1733/27K 1410/2.4K 23.1

javac
Doopb 48.99 84084∼13.1K 4102/35K 2925/4.0K 43.6
Doop 54.62 84425∼13.3K 4103/36K 2930/4.0K 45
Elf 55.56 84747∼13.4K 4105/36K 2934/4.0K 47.9

remaining five programs (highlighted in bold font). Thus, these results suggest
that Elf appears to strike a good tradeoff between soundness and precision.

For jython, both Doop and Elf have significantly increased the code cover-
age of the underlying pointer analysis used. For the invoke() site in
PyType::fillFromClass(), both Doop and Elf have resolved 17 methods
named typeSetup residing in 17 classes, with five being resolved differently as
explained earlier. When each of these methods is executed (during our recall ex-
periment), 1 to 47 inner classes are exercised. So this benchmark demonstrates
once again the importance of reflection analysis, in practice.



Table 6. Comparing Elf and Doop in term of analysis times (secs).
antlr bloat chart eclipse fop hsqldb jython luindex lusearch pmd xalan eclipse4 javac

Doop 171 299 503 151 442 - 730 103 112 167 215 262 563
Elf 211 309 538 193 804 475 3561 115 122 550 733 445 755

5.3.4 Scalability Table 6 compares Elf with Doop in terms of analysis time
consumed. In the case of hsqldb, Doop cannot run to completion in three hours.
In prior work [6, 15], jython and hsqldb are often analyzed with reflection dis-
abled and hsqldb has its entry point set manually in a special harness. Note that
if only target method/field names are tracked as described in [8, 9], the resulting
version of Elf cannot terminate in three hours for these two benchmarks. As
Elf handles more reflection methods than Doop, by performing target propa-
gation as well as more elaborate and more time-consuming target inference, Elf
exhibits a slowdown of 1.9X on average with hsqldb disregarded.

6 Related Work
Static Analysis In Section 3.3, we have compared Elf in great detail with
the two most-closely related static analyses [4, 8]. Briefly, Livshits et al. [8] in-
troduced the first static reflection analysis for Java, which has influenced the
design and implementation of several pointer analysis tools [4, 20, 21]. They sug-
gested tracking the flow of string constants and leveraging the cast information
to narrow the types of objects created at newInstance(), and implemented their
analysis in bddbddb [21], a tool for specifying and querying program analyses.
However, Elf is the first to leverage the cast information to resolve targets at
other reflective calls, such as invoke(), get() and set().

Doop [4] includes a few pointer analyses for Java programs using the Datalog
language. Its reflection handling can be seen as analogous to adding a sophisti-
cated analysis similar as [8] but in conjunction with a context-sensitive pointer
analysis. In addition, Doop considers more Java features (such as distinguishing
instance from static field operations) when handling reflection.

Wala [20] is a tool from IBM Research designed for static analysis. Its re-
flection handling is similar to Doop’s (i.e., by considering only class types to
resolve reflective calls), but without handling Field-related methods.

In summary, existing solutions focus on target propagation by tracking the
flow of string constants representing either method/field names [8, 21] or class
names [4, 20] in a program. Elf takes a disciplined approach to balance sound-
ness, precision and scalability by exploiting a self-inferencing property inherent
in reflective code. As illustrated in Figure 5, Elf resolves a reflective target when
both its target class (red circle) and its target method/field name (blue circle)
are known, by performing target propagation (through tracking string constants)
and target inference (through type inference). In future work, we will improve
Elf to infer missing target method/field names based on some partial informa-
tion obtained from string manipulation operations and to handle the situations
when either a target method/field name or a target class type is missing.

Dynamic Analysis Hirzel et al. [5] proposed an online pointer analysis for han-
dling various dynamic features of Java at run time. To tackle reflection, their



analysis instruments a program so that constraints are generated dynamically
when the injected code is triggered during program execution. Thus, pointer
information is incrementally updated when new constraints are gradually intro-
duced by reflection. This technique on reflection handling can be used in JIT
optimizations but may not be suitable for whole-program pointer analysis.

To facilitate (static) pointer analysis, Bodden et al. [2] suggested leveraging
the runtime information gathered for reflective calls. Their tool, TamiFlex,
records usage information of reflective calls in the program at run time, interprets
the logging information, and finally, transforms these reflective calls into regular
Java method calls. In addition, TamiFlex inserts runtime checks to warn the
user in cases that the program encounters reflective calls that diverge from the
recorded information of previous runs. Elf is complementary to TamiFlex by
resolving reflective calls statically rather than dynamically.

Soot [19] is a static analysis and optimization framework for Java. For reflec-
tive callsites found in the standard libraries, the Soot developers have discovered
a list of their possible targets manually. Soot has now a special built-in support
for TamiFlex [2], allowing some reflective call targets to be found dynamically.

Others Braux and Noyé [3] provided offline partial evaluation support for reflec-
tion in order to perform aggressive compiler optimizations for Java applications.
It transforms a program by compiling away the reflection code into regular opera-
tions on objects according to their concrete types that are constrained manually.
Elf can be viewed as a tool for inferring such constraints automatically.

To increase code coverage, some static analysis tools [4, 21] allow the user
to provide ad hoc manual specifications about reflection usage in a program.
However, due to the diversity and complexity of applications, it is not yet clear
how to do so in a systematic manner. For framework-based web applications,
Sridharan et al. [16] introduced a framework that exploits domain knowledge
to automatically generate a specification of framework-related behaviours (e.g.,
reflection usage) by processing both application code and configuration files. Elf
may also utilize domain knowledge to analyze some particular configuration files,
but only for those reflective call sites that cannot be resolved effectively.

Finally, the dynamic analyses [2, 5] work in the presence of both dynamic
class loading and reflection. Nguyen, Potter and Xue [12, 22, 23] introduced an
interprocedural side-effect analysis for open-world Java programs (by allowing
dynamic class loading but disallowing reflection). Like other static reflection
analyses [4, 8, 20, 21], Elf can presently analyze closed-world Java programs only.

7 Conclusion
Reflection analysis is difficult but increasingly important both for sound and for
under-approximate pointer analysis for Java applications, especially framework-
based applications. This paper advances the state-of-the art in reflection analysis
for Java, by (1) presenting some useful findings on reflection usage in Java bench-
marks and applications, (2) introducing a self-inferencing resolution approach,
(3) contributing an open-source implementation consisting of 207 Datalog rules,
and (4) demonstrating the effectiveness of our new reflection analysis.
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A Artifact Description

Authors of the artifact. Design: Yue Li, Tian Tan and Jingling Xue. Devel-
opers: Tian Tan and Yue Li.

Summary. The artifact includes all the four analyses evaluated in the paper,
namely Doop, Elf and two variations of Elf, Elfd and Elfp.

Content. The artifact package includes:
– an index.html file containing the detailed instructions for using the artifact

and for reproducing the experimental results in the paper;
– the four analysis tools, Doop, Elf, Elfd and Elfp;
– a modified version of the fact generator provided by Doop;
– a Python script exec.py (and some auxiliary scripts) for driving all the

provided analyses and formatting the output results;
– all the necessary JREs, applications and benchmarks analyzed.

Elf and its two variations, Elfd and Elfp, are all built on top of Doop (version
r160113). Elf presently consists of 207 rules (with about 1800 LOC). To simplify
repeatability of our experiments, we have provided these analysis configurations
directly instead of Doop patches.

Getting the artifact. The artifact endorsed by the Artifact Evaluation Com-
mittee is available free of charge as supplementary material of this paper on
SpringerLink. The latest version of our code is available at
http://www.cse.unsw.edu.au/~jingling/elf.

Tested platforms. The artifact works on 64-bit Linux (Ubuntu 13.10 LTS in
our case) machine with at least 8 GB of RAM.

License. MIT license (http://opensource.org/license/MIT)

MD5 sum of the artifact. 024b6fccc7c7bb2edc7dac443f457761

Size of the artifact. 358M


